Number Forms and Mathematical Symbols

You can use these symbols in your questions or assignments.

Numbers

Symbol Code
𝟬 <s:zerobold>
0 with arrow <s:0arrow>
vector 0 <s:0arrowbold>
vector 0 <s:0vecbold>
0 hat <s:0hat>
½ <s:frac12>
¼ <s:frac14>
¾ <s:frac34>
naught <s:naught>
<s:naught_hi>
<s:naught_lo>
<s:roman1>
<s:roman10>
<s:roman100>
<s:roman1000>
<s:roman1000_sm>
<s:roman100_sm>
<s:roman10_sm>
<s:roman11_sm>
<s:roman12_sm>
<s:roman1_sm>
<s:roman2>
<s:roman2_sm>
<s:roman3>
<s:roman3_sm>
<s:roman4>
<s:roman4_sm>
<s:roman5>
<s:roman50>
<s:roman500>
<s:roman500_sm>
<s:roman50_sm>
<s:roman5_sm>
<s:roman6>
<s:roman6_sm>
<s:roman7>
<s:roman7_sm>
<s:roman8>
<s:roman8_sm>
<s:roman9>
<s:roman9_sm>
circled 1 <s:circle1>
circled 2 <s:circle2>
circled 3 <s:circle3>
circled 4 <s:circle4>
circled 5 <s:circle5>
½ <s:half>
<s:sub0>
<s:sub1>
<s:sub2>
<s:sub3>
<s:sub4>
<s:sub5>
<s:sub6>
<s:sub7>
<s:sub8>
<s:sub9>
<s:sup0>
¹ <s:sup1>
² <s:sup2>
³ <s:sup3>
<s:sup4>
<s:sup5>

Math

Symbol Code
<s:almostequal_equal>
<s:approximate>
<s:assertion>
<s:because>
<s:bicond>
<s:bowtie_op>
less or equal is true <s:checklteq>
<s:complement>
vertical correspondence arrow <s:correspondence>
<s:corresponds>
<s:difference>
<s:doteq>
<s:doubleprime>
<s:downtack>
<s:end_proof>
<s:equal_all>
<s:equal_geom>
<s:equal_greater>
<s:equal_less>
<s:equal_precedes>
<s:equal_succeeds>
<s:equiangular>
<s:equilarrow>
<s:equiv_geom>
<s:equiv_strict>
<s:equiv_to>
<s:estimated>
<s:estimates>
<s:euler>
<s:exists>
<s:forall>
<s:forces>
<s:fourthroot>
<s:fracslash>
<s:frasl>
<s:greaterthan_rq>
multiplied by <s:greenmultiply>
<s:identical>
<s:implies>
<s:increment>
<s:intercalate>
<s:lefttack>
<s:lessthan_lq>
<s:measuredangle>
<s:models>
<s:nand>
<s:nary_and>
<s:nary_coproduct>
<s:nary_intersect>
<s:nary_product>
<s:nary_summation>
<s:neither_approx>
<s:nor>
<s:norm_subgr>
<s:norm_subgr_equal>
¬ <s:not>
<s:not_almostequal>
<s:not_approx>
<s:not_asymptotic>
<s:not_exists>
<s:not_forces>
<s:not_greater>
<s:not_identical>
<s:not_less>
<s:not_parallel>
<s:not_precedes>
<s:not_proves>
<s:not_succeeds>
<s:not_true>
not congruent <s:notcongruent>
<s:notdivides>
<s:notequal>
not equivalent <s:notequiv>
<s:notgreater>
not greater than or equal to <s:notgreaterorequal>
<s:notgreaterorequal2>
<s:notless>
not less than or equal to <s:notlessorequal>
<s:notlessorequal2>
is not much greater than <s:notmuchgreater>
is not much less than <s:notmuchless>
not related <s:notrelated>
% <s:percent>
<s:precedes>
<s:precedes_equal>
<s:precedes_equiv>
<s:precedes_rel>
<s:prime>
<s:proportion>
<s:propto>
multiplied by <s:redmultiply>
± <s:redplusminus>
<s:righttack>
<s:rt_angle_arc>
<s:semiprod_lf>
<s:semiprod_lf_norm>
<s:semiprod_rt>
<s:semiprod_rt_norm>
<s:subgr_norm_contains>
<s:subgr_norm_contains_equal>
<s:succeeds>
<s:succeeds_equal>
<s:succeeds_equiv>
<s:succeeds_rel>
<s:therefore_sm>
<s:supminus>
<s:supplus>
˜ <s:tilde_sm>
<s:tilde_trp>
<s:true>
<s:xor>
<s:and>
<s:angle>
<s:approx>
<s:asymptotic>
/ <s:bigdiv>
left angle bracket <s:bra>
<s:bra_acc>
<s:circleminus>
<s:circleplus>
<s:circleequals>
may be greater <s:ckgreater>
may be greater or equal <s:ckgreaterequal>
may be less <s:ckless>
may be less or equal <s:cklessequal>
<s:ckequal>
<s:compose>
<s:congruent>
<s:cross>
÷ <s:divide>
<s:eqq>
<s:equivalent>
<s:greaterorequal>
> <s:greaterthan>
<s:infinity>
infinity <s:infinitysm>
right angle bracket <s:ket>
<s:ket_acc>
<s:lceiling>
[[ <s:leftgrint>
<s:lessorequal>
< <s:lessthan>
<s:lfloor>
<s:minus>
<s:minusplus>
<s:muchgreaterthan>
<s:muchlessthan>
<s:multiply>
<s:or>
<s:orthogonal>
<s:parallel>
<s:parallel_black>
parallel to <s:parallel_s>
<s:parallel_white>
± <s:plusminus>
<s:rceiling>
repeating zero <s:repzero>
<s:rfloor>
<s:rightangle>
]] <s:rightgrint>
<s:sqrt>
<s:square_root>
minus within a square <s:squareminus>
plus within a square <s:squareplus>
<s:thereexists>
<s:therefore>
× <s:times>
minus within a triangle <s:triangleminus>
plus within a triangle <s:triangleplus>
<s:strictpref>
<s:tripleprime>
<s:weakpref>

Sets

Symbol Code
complex function <s:complex>
<s:contains>
<s:element>
<s:integers>
<s:intersect>
<s:nary_or>
<s:nary_union>
<s:not_contains>
<s:not_element>
<s:not_subset>
<s:not_subset_neq>
<s:not_superset>
<s:not_supersetneq>
not in <s:notin>
is not a subset of <s:notsubset>
the set of real numbers <s:Reals>
<s:Reals2>
<s:superset>
<s:superseteq>
<s:supersetneq>
<s:union>
<s:empty_set>
<s:subset>
<s:subseteq>
subset not equal to <s:subsetneq>
<s:subset_neq>

Vectors

Symbol Code
<s:leftupvector>
vector P Q <s:PQvecitalic>
vector P R <s:PRvecitalic>
<s:rightdownvector>
theta hat <s:vecthetahat>
<s:vecstart>
<s:vecstop>

Calculus

Symbol Code
<s:bottomintegral>
<s:contourintegral>
integral over <s:intbig>
nabla with arrow <s:nablaarrow>
<s:partial>
<s:surfaceintegral>
<s:topintegral>
<s:volumeintegral>
<s:doubleintegral>
double line integral <s:doublelineint>
<s:integral>
<s:integral_anti_cont>
<s:integral_clock>
<s:integral_clock_cont>
<s:nabla>
<s:tripleintegral>
double integral over R <s:doubleint_r>
f prime of x <s:fprimex_acc>
f of x <s:fx_acc>
g prime of x <s:gprimex_acc>
g of x <s:gx_acc>
h prime of x <s:hprimex_acc>
h of x <s:hx_acc>
line integral <s:lineint>
counterclockwise line integral <s:ointccw>
counterclockwise line integral 1 <s:ointccw1>
counterclockwise line integral 2 <s:ointccw2>
clockwise line integral <s:ointcw>