Asia
Australia/New Zealand
Canada
Europe
Middle East
Africa
Latin America
India
Puerto Rico
United States

Number Forms and Mathematical Symbols

You can use these symbols in your questions or assignments.

Numbers

Symbol Code
𝟬 <s:zerobold>
0 with arrow <s:0arrow>
vector 0 <s:0arrowbold>
vector 0 <s:0vecbold>
0 hat <s:0hat>
½ <s:frac12>
¼ <s:frac14>
¾ <s:frac34>
naught <s:naught>
<s:naught_hi>
<s:naught_lo>
<s:roman1>
<s:roman10>
<s:roman100>
<s:roman1000>
<s:roman1000_sm>
<s:roman100_sm>
<s:roman10_sm>
<s:roman11_sm>
<s:roman12_sm>
<s:roman1_sm>
<s:roman2>
<s:roman2_sm>
<s:roman3>
<s:roman3_sm>
<s:roman4>
<s:roman4_sm>
<s:roman5>
<s:roman50>
<s:roman500>
<s:roman500_sm>
<s:roman50_sm>
<s:roman5_sm>
<s:roman6>
<s:roman6_sm>
<s:roman7>
<s:roman7_sm>
<s:roman8>
<s:roman8_sm>
<s:roman9>
<s:roman9_sm>
circled 1 <s:circle1>
circled 2 <s:circle2>
circled 3 <s:circle3>
circled 4 <s:circle4>
circled 5 <s:circle5>
½ <s:half>
<s:sub0>
<s:sub1>
<s:sub2>
<s:sub3>
<s:sub4>
<s:sub5>
<s:sub6>
<s:sub7>
<s:sub8>
<s:sub9>
<s:sup0>
¹ <s:sup1>
² <s:sup2>
³ <s:sup3>
<s:sup4>
<s:sup5>

Math

Symbol Code
<s:almostequal_equal>
<s:approximate>
<s:assertion>
<s:because>
<s:bicond>
<s:bowtie_op>
less or equal is true <s:checklteq>
<s:complement>
vertical correspondence arrow <s:correspondence>
<s:corresponds>
<s:difference>
<s:doteq>
<s:doubleprime>
<s:downtack>
<s:end_proof>
<s:equal_all>
<s:equal_geom>
<s:equal_greater>
<s:equal_less>
<s:equal_precedes>
<s:equal_succeeds>
<s:equiangular>
<s:equilarrow>
<s:equiv_geom>
<s:equiv_strict>
<s:equiv_to>
<s:estimated>
<s:estimates>
<s:euler>
<s:exists>
<s:forall>
<s:forces>
<s:fourthroot>
<s:fracslash>
<s:frasl>
<s:greaterthan_rq>
multiplied by <s:greenmultiply>
<s:identical>
<s:implies>
<s:increment>
<s:intercalate>
<s:lefttack>
<s:lessthan_lq>
<s:measuredangle>
<s:models>
<s:nand>
<s:nary_and>
<s:nary_coproduct>
<s:nary_intersect>
<s:nary_product>
<s:nary_summation>
<s:neither_approx>
<s:nor>
<s:norm_subgr>
<s:norm_subgr_equal>
¬ <s:not>
<s:not_almostequal>
<s:not_approx>
<s:not_asymptotic>
<s:not_exists>
<s:not_forces>
<s:not_greater>
<s:not_identical>
<s:not_less>
<s:not_parallel>
<s:not_precedes>
<s:not_proves>
<s:not_succeeds>
<s:not_true>
not congruent <s:notcongruent>
<s:notdivides>
<s:notequal>
not equivalent <s:notequiv>
<s:notgreater>
not greater than or equal to <s:notgreaterorequal>
<s:notgreaterorequal2>
<s:notless>
not less than or equal to <s:notlessorequal>
<s:notlessorequal2>
is not much greater than <s:notmuchgreater>
is not much less than <s:notmuchless>
not related <s:notrelated>
% <s:percent>
<s:precedes>
<s:precedes_equal>
<s:precedes_equiv>
<s:precedes_rel>
<s:prime>
<s:proportion>
<s:propto>
multiplied by <s:redmultiply>
± <s:redplusminus>
<s:righttack>
<s:rt_angle_arc>
<s:semiprod_lf>
<s:semiprod_lf_norm>
<s:semiprod_rt>
<s:semiprod_rt_norm>
<s:subgr_norm_contains>
<s:subgr_norm_contains_equal>
<s:succeeds>
<s:succeeds_equal>
<s:succeeds_equiv>
<s:succeeds_rel>
<s:therefore_sm>
<s:supminus>
<s:supplus>
˜ <s:tilde_sm>
<s:tilde_trp>
<s:true>
<s:xor>
<s:and>
<s:angle>
<s:approx>
<s:asymptotic>
/ <s:bigdiv>
left angle bracket <s:bra>
<s:bra_acc>
<s:circleminus>
<s:circleplus>
<s:circleequals>
may be greater <s:ckgreater>
may be greater or equal <s:ckgreaterequal>
may be less <s:ckless>
may be less or equal <s:cklessequal>
<s:ckequal>
<s:compose>
<s:congruent>
<s:cross>
÷ <s:divide>
<s:eqq>
<s:equivalent>
<s:greaterorequal>
> <s:greaterthan>
<s:infinity>
infinity <s:infinitysm>
right angle bracket <s:ket>
<s:ket_acc>
<s:lceiling>
[[ <s:leftgrint>
<s:lessorequal>
< <s:lessthan>
<s:lfloor>
<s:minus>
<s:minusplus>
<s:muchgreaterthan>
<s:muchlessthan>
<s:multiply>
<s:or>
<s:orthogonal>
<s:parallel>
<s:parallel_black>
parallel to <s:parallel_s>
<s:parallel_white>
± <s:plusminus>
<s:rceiling>
repeating zero <s:repzero>
<s:rfloor>
<s:rightangle>
]] <s:rightgrint>
<s:sqrt>
<s:square_root>
minus within a square <s:squareminus>
plus within a square <s:squareplus>
<s:thereexists>
<s:therefore>
× <s:times>
minus within a triangle <s:triangleminus>
plus within a triangle <s:triangleplus>
<s:strictpref>
<s:tripleprime>
<s:weakpref>

Sets

Symbol Code
complex function <s:complex>
<s:contains>
<s:element>
<s:integers>
<s:intersect>
<s:nary_or>
<s:nary_union>
<s:not_contains>
<s:not_element>
<s:not_subset>
<s:not_subset_neq>
<s:not_superset>
<s:not_supersetneq>
not in <s:notin>
is not a subset of <s:notsubset>
the set of real numbers <s:Reals>
<s:Reals2>
<s:superset>
<s:superseteq>
<s:supersetneq>
<s:union>
<s:empty_set>
<s:subset>
<s:subseteq>
subset not equal to <s:subsetneq>
<s:subset_neq>

Vectors

Symbol Code
<s:leftupvector>
vector P Q <s:PQvecitalic>
vector P R <s:PRvecitalic>
<s:rightdownvector>
theta hat <s:vecthetahat>
<s:vecstart>
<s:vecstop>

Calculus

Symbol Code
<s:bottomintegral>
<s:contourintegral>
integral over <s:intbig>
nabla with arrow <s:nablaarrow>
<s:partial>
<s:surfaceintegral>
<s:topintegral>
<s:volumeintegral>
<s:doubleintegral>
double line integral <s:doublelineint>
<s:integral>
<s:integral_anti_cont>
<s:integral_clock>
<s:integral_clock_cont>
<s:nabla>
<s:tripleintegral>
double integral over R <s:doubleint_r>
f prime of x <s:fprimex_acc>
f of x <s:fx_acc>
g prime of x <s:gprimex_acc>
g of x <s:gx_acc>
h prime of x <s:hprimex_acc>
h of x <s:hx_acc>
line integral <s:lineint>
counterclockwise line integral <s:ointccw>
counterclockwise line integral 1 <s:ointccw1>
counterclockwise line integral 2 <s:ointccw2>
clockwise line integral <s:ointcw>