Graph a Contour Plot with WAPlot

Graph a contour plot using Mathematica® syntax.
ellipse with form (x - 1)^2/36 + (y + 2)^2/4 = 1

This type of Mathematica graph is primarily used for implicit functions, trigonometric functions, and vertical lines.
  1. Click Questions > Create.
    The Question Editor opens.
  2. In Name, type a name for the question.
  3. In Mode, select one of the question modes to define the basic behaviors for your question.
  4. In Question, type your question.

    Use the answer placeholder string <_> to specify where the answer box should be displayed.

  5. In Answer, specify the answer key for your question. Often, you will specify distractors or options configuring your question's behavior.
  6. Add WAPlot tags to the question, answer, or solution field of a question.
    If a WAPlot image is used in the answer field, the question mode must be multiple-choice, and there cannot be linebreaks in the WAPlot code. WAPlot images cannot be placed in assignment descriptions.
    <waplot type='MathematicaSyntax'> </waplot>
  7. Insert the Mathematica code for your function inside the WAPlot tags.
    <waplot type='MathematicaSyntax'> 
        ContourPlot[
            (x - 1)^2/36 + (y + 2)^2/4 == 1, 
            {x, -5,7}, {y, -4,0}, 
            Frame->False, 
            Axes -> True, 
            ContourStyle->Directive[Purple, Thick], 
            AspectRatio->Automatic, 
            PlotRange->{{-10.5,10.5}, {-5,5}}, 
            AxesLabel->{x, y}
        ] 
    </waplot>
  8. In the <waplot> tag, use the @alt attribute to add alternative text describing the image for students using screen readers.
    <waplot type='MathematicaSyntax' alt='ellipse with form (x - 1)^2/36 + (y + 2)^2/4 = 1'>
    Make sure the content of the alternative text is appropriate to the pedagogy of your question.

Graphing a Contour Plot

The following table summarizes an actual question.

QID

3969543

Name

Template2 6.WAPLOT.06.

Mode

Multiple-Choice

Question

Find the equation of the graph given below.
<figure>
    <waplot type='MathematicaSyntax' alt='ellipse with form (x - 1)^2/36 + (y + 2)^2/4 = 1'> 
        ContourPlot[
            (x - 1)^2/36 + (y + 2)^2/4 == 1, 
            {x, -5,7}, {y, -4,0}, 
            Frame->False, 
            Axes->True,
            AxesLabel->{x, y}, 
            PlotRange->{{-10.5,10.5}, {-5,5}},
            AspectRatio->Automatic,
            ContourStyle->Directive[Purple, Thick] 
        ] 
    </waplot>
</figure>
<_>

Answer

<watex>\[\frac{(x - 1)^2}{36} + \frac{(y + 2)^2}{4} = 1 \]</watex>
<watex>\[\frac{(x + 1)^2}{36} + \frac{(y - 2)^2}{4} = 1\]</watex>
<watex>\[\frac{(x - 1)^2}{4} + \frac{(y + 2)^2}{36} = 1\]</watex>
<watex>\[\frac{(x + 1)^2}{4} + \frac{(y - 2)^2}{36} = 1\]</watex>

Display to Students

Question as displayed to students

Graphing a Randomized Contour Plot

The following table summarizes an actual question.

Click the link to duplicate the example as a question in WebAssign.

Note You must be logged into WebAssign for a template link to function.

QID

3979381

Name

Template2 6.WAPLOT.07.

Mode

Multiple-Choice

Question

<eqn>
# ellipse with form (x - $h)^2/$aa + (y + $k)^2/$bb = 1
($h, $k) = pick(2, 1..5);
($a, $b) = sort{$b <=> $a} pick(2, 2..5);
$aa = $a**2;
$bb = $b**2;

# plotrange variables for graph
$xmin = $h - $a;
$xmax = $h + $a;
$ymin = -$k - $b;
$ymax = -$k + $b;
 ''</eqn>

Find the equation of the graph given below.
<figure>
    <waplot type='MathematicaSyntax' alt='ellipse with form (x - $h)^2/$aa + (y + $k)^2/$bb = 1'>
        ContourPlot[
            (x - $h)^2/$aa + (y + $k)^2/$bb == 1,
            {x, $xmin, $xmax}, {y, $ymin, $ymax}, 
            Frame->False, 
            Axes -> True, 
            AxesLabel->{x, y},
            PlotRange->{{-10.5,10.5}, {-10.5,10.5}},          
            AspectRatio->Automatic, 
            ContourStyle->Directive[Purple, Thick]
        ] 
    </waplot>
</figure>
<_>

Answer

<watex>\[\frac{(x - <EQN $h>)^2}{<EQN $aa>} + \frac{(y + <EQN $k>)^2}{<EQN $bb>} = 1 \]</watex>
<watex>\[\frac{(x + <EQN $h>)^2}{<EQN $aa>} + \frac{(y - <EQN $k>)^2}{<EQN $bb>} = 1\]</watex>
<watex>\[\frac{(x - <EQN $h>)^2}{<EQN $bb>} + \frac{(y + <EQN $k>)^2}{<EQN $aa>} = 1\]</watex>
<watex>\[\frac{(x + <EQN $h>)^2}{<EQN $bb>} + \frac{(y - <EQN $k>)^2}{<EQN $aa>} = 1\]</watex>

Display to Students

Question as displayed to students