Redox Reactions Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Data Table A1: Reactions of Oxidizing Agents

	Cu^{2+}	${ m Mg^2}+$	$\mathrm{MnO_4^{1-}}$
$_{ m H_2O}$			
${\rm H_{3}O^{1+}}$			

Question 1: List the oxidizing agents in order, from weakest to strongest.

Question 2: Write half-reactions for the oxidizing agents in order, from weakest to strongest. (*Hint: Remember that oxidizing agents get reduced.*)

Data Table A2: Reactions of Reducing Agents

	Cu	Mg	Zn
$\mathrm{H_{2}O_{2}}$			
KI			

Question 3: List the reducing agents in order, from strongest to weakest.
Question 4: Write the half-reactions for the reducing agents in order, from weakest to strongest. (Hint: Remember that reducing agents get oxidized.)
Question 5: The strongest oxidizing agent is said to have the most positive potential and the strongest reducing agent has the most negative potential. Based on your observations, list all the half-reactions (as reductions) in order from most negative to most positive.
Question 6: Consider the reaction involving magnesium metal. a. With what compound, element or ion did magnesium react?
b. Write a half-reaction for what happened to this chemical. You may use a Table of standard Reduction Potentials ¹ for help.
c. Write the balanced equation for the reaction that occurred between magnesium metal and this chemical.
$-\frac{1}{1}$ /tables/tables.pdf

Question 7: You also observed a reaction with zinc metal.

- a. With what compound, element or ion did zinc react?
- b. Write a half-reaction for what happened to this chemical. You may use a Table of standard Reduction Potentials² for help.
- c. Write the balanced equation for the reaction that occurred between zinc metal and this chemical.

Question 8: Based on your answers to Question 5, will either of these combinations produce a reaction?

a.
$$Cu + Mg^{2+}$$

b.
$$Cu^{2+} + Mg$$

Data Table B1: Cell Potentials vs a Cu²⁺/Cu Couple

Electrochemical	Half-Cell Being	Measured Potential Differences
Cell	Studied	vs Cu^{2+}/Cu in V
Copper-Copper	Cu^{2+}/Cu	
Silver-Copper	Ag^{1+}/Ag	
	_	
Lead - Copper	Pb^{2+}/Pb	
Zinc-Copper	Zn^{2+}/Zn	

²../tables/tables.pdf

Data Table B2: Cell Potentials in Order, with Half-Reactions

Half-Cell	Measured Cell Potential (Most negative to most positive)	Calculated Cell Potential vs SHE (Add +0.34 V)	Standard Reduction Potential vs SHE from table
/	V	V	V
/	V	V	V
/	V	V	V
/	V	V	V

Question 9: Based on the order obtained by experiment,

- a. Which species has the highest energy filled or partially filled orbitals?
- b. Which species has the lowest energy unfilled or partially filled orbitals?
- c. Which species is the strongest reducing agent?
- d. Which species is the strongest oxidizing agent?

Question 10: Using the order you found in Data Table B2 for the cell potentials, write the half-reaction for each half-cell. Write the reactions as reductions.

Question 11: The ${\rm Mg^{2+}/Mg}$ couple was not tested when measuring half-cell potentials. Based on its behavior in Part A, where would you place it in Data Table B2? (If you are doing Part B first, return to this question after completing both parts of the lab.