
11.7 Polar Form of Complex Numbers 989

11.7 Polar Form of Complex Numbers

In this section, we return to our study of complex numbers which were first introduced in Section
3.4. Recall that a complex number is a number of the form z = a + bi where a and b are real
numbers and i is the imaginary unit defined by i =

√
−1. The number a is called the real part of

z, denoted Re(z), while the real number b is called the imaginary part of z, denoted Im(z). From
Intermediate Algebra, we know that if z = a + bi = c + di where a, b, c and d are real numbers,
then a = c and b = d, which means Re(z) and Im(z) are well-defined.1 To start off this section,
we associate each complex number z = a + bi with the point (a, b) on the coordinate plane. In
this case, the x-axis is relabeled as the real axis, which corresponds to the real number line as
usual, and the y-axis is relabeled as the imaginary axis, which is demarcated in increments of the
imaginary unit i. The plane determined by these two axes is called the complex plane.

Real Axis

Imaginary Axis

(−4, 2)←→ z = −4 + 2i

(0,−3)←→ z = −3i

(3, 0)←→ z = 3
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The Complex Plane

Since the ordered pair (a, b) gives the rectangular coordinates associated with the complex number
z = a+ bi, the expression z = a+ bi is called the rectangular form of z. Of course, we could just
as easily associate z with a pair of polar coordinates (r, θ). Although it is not a straightforward as
the definitions of Re(z) and Im(z), we can still give r and θ special names in relation to z.

Definition 11.2. The Modulus and Argument of Complex Numbers: Let z = a+ bi be
a complex number with a = Re(z) and b = Im(z). Let (r, θ) be a polar representation of the
point with rectangular coordinates (a, b) where r ≥ 0.

• The modulus of z, denoted |z|, is defined by |z| = r.

• The angle θ is an argument of z. The set of all arguments of z is denoted arg(z).

• If z 6= 0 and −π < θ ≤ π, then θ is the principal argument of z, written θ = Arg(z).

1‘Well-defined’ means that no matter how we express z, the number Re(z) is always the same, and the number
Im(z) is always the same. In other words, Re and Im are functions of complex numbers.
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Some remarks about Definition 11.2 are in order. We know from Section 11.4 that every point in
the plane has infinitely many polar coordinate representations (r, θ) which means it’s worth our
time to make sure the quantities ‘modulus’, ‘argument’ and ‘principal argument’ are well-defined.
Concerning the modulus, if z = 0 then the point associated with z is the origin. In this case, the
only r-value which can be used here is r = 0. Hence for z = 0, |z| = 0 is well-defined. If z 6= 0,
then the point associated with z is not the origin, and there are two possibilities for r: one positive
and one negative. However, we stipulated r ≥ 0 in our definition so this pins down the value of |z|
to one and only one number. Thus the modulus is well-defined in this case, too.2 Even with the
requirement r ≥ 0, there are infinitely many angles θ which can be used in a polar representation
of a point (r, θ). If z 6= 0 then the point in question is not the origin, so all of these angles θ are
coterminal. Since coterminal angles are exactly 2π radians apart, we are guaranteed that only one
of them lies in the interval (−π, π], and this angle is what we call the principal argument of z,
Arg(z). In fact, the set arg(z) of all arguments of z can be described using set-builder notation as
arg(z) = {Arg(z) + 2πk | k is an integer}. Note that since arg(z) is a set, we will write ‘θ ∈ arg(z)’
to mean ‘θ is in3 the set of arguments of z’. If z = 0 then the point in question is the origin,
which we know can be represented in polar coordinates as (0, θ) for any angle θ. In this case, we
have arg(0) = (−∞,∞) and since there is no one value of θ which lies (−π, π], we leave Arg(0)
undefined.4 It is time for an example.

Example 11.7.1. For each of the following complex numbers find Re(z), Im(z), |z|, arg(z) and
Arg(z). Plot z in the complex plane.

1. z =
√

3− i 2. z = −2 + 4i 3. z = 3i 4. z = −117

Solution.

1. For z =
√

3 − i =
√

3 + (−1)i, we have Re(z) =
√

3 and Im(z) = −1. To find |z|, arg(z)
and Arg(z), we need to find a polar representation (r, θ) with r ≥ 0 for the point P (

√
3,−1)

associated with z. We know r2 = (
√

3)2 + (−1)2 = 4, so r = ±2. Since we require r ≥ 0,
we choose r = 2, so |z| = 2. Next, we find a corresponding angle θ. Since r > 0 and P lies

in Quadrant IV, θ is a Quadrant IV angle. We know tan(θ) = −1√
3

= −
√

3
3 , so θ = −π

6 + 2πk

for integers k. Hence, arg(z) =
{
−π

6 + 2πk | k is an integer
}

. Of these values, only θ = −π
6

satisfies the requirement that −π < θ ≤ π, hence Arg(z) = −π
6 .

2. The complex number z = −2 + 4i has Re(z) = −2, Im(z) = 4, and is associated with the
point P (−2, 4). Our next task is to find a polar representation (r, θ) for P where r ≥ 0.
Running through the usual calculations gives r = 2

√
5, so |z| = 2

√
5. To find θ, we get

tan(θ) = −2, and since r > 0 and P lies in Quadrant II, we know θ is a Quadrant II angle.
We find θ = π + arctan(−2) + 2πk, or, more succinctly θ = π − arctan(2) + 2πk for integers
k. Hence arg(z) = {π − arctan(2) + 2πk | k is an integer}. Only θ = π − arctan(2) satisfies
the requirement −π < θ ≤ π, so Arg(z) = π − arctan(2).

2In case you’re wondering, the use of the absolute value notation |z| for modulus will be explained shortly.
3Recall the symbol being used here, ‘∈,’ is the mathematical symbol which denotes membership in a set.
4If we had Calculus, we would regard Arg(0) as an ‘indeterminate form.’ But we don’t, so we won’t.
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3. We rewrite z = 3i as z = 0 + 3i to find Re(z) = 0 and Im(z) = 3. The point in the plane
which corresponds to z is (0, 3) and while we could go through the usual calculations to find
the required polar form of this point, we can almost ‘see’ the answer. The point (0, 3) lies 3
units away from the origin on the positive y-axis. Hence, r = |z| = 3 and θ = π

2 + 2πk for
integers k. We get arg(z) =

{
π
2 + 2πk | k is an integer

}
and Arg(z) = π

2 .

4. As in the previous problem, we write z = −117 = −117 + 0i so Re(z) = −117 and Im(z) = 0.
The number z = −117 corresponds to the point (−117, 0), and this is another instance where
we can determine the polar form ‘by eye’. The point (−117, 0) is 117 units away from the
origin along the negative x-axis. Hence, r = |z| = 117 and θ = π + 2π = (2k + 1)πk for
integers k. We have arg(z) = {(2k + 1)π | k is an integer}. Only one of these values, θ = π,
just barely lies in the interval (−π, π] which means and Arg(z) = π. We plot z along with
the other numbers in this example below.

Real Axis

Imaginary Axis

z =
√

3− i

z = −2 + 4i

z = 3i

z = −117

−117 −2 −1 1 2 3 4
−i

i

2i

3i

4i

Now that we’ve had some practice computing the modulus and argument of some complex numbers,
it is time to explore their properties. We have the following theorem.

Theorem 11.14. Properties of the Modulus: Let z and w be complex numbers.

• |z| is the distance from z to 0 in the complex plane

• |z| ≥ 0 and |z| = 0 if and only if z = 0

• |z| =
√

Re(z)2 + Im(z)2

• Product Rule: |zw| = |z||w|

• Power Rule: |zn| = |z|n for all natural numbers, n

• Quotient Rule:
∣∣∣ z
w

∣∣∣ =
|z|
|w|

, provided w 6= 0

To prove the first three properties in Theorem 11.14, suppose z = a + bi where a and b are real
numbers. To determine |z|, we find a polar representation (r, θ) with r ≥ 0 for the point (a, b). From
Section 11.4, we know r2 = a2 + b2 so that r = ±

√
a2 + b2. Since we require r ≥ 0, then it must be

that r =
√
a2 + b2, which means |z| =

√
a2 + b2. Using the distance formula, we find the distance
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from (0, 0) to (a, b) is also
√
a2 + b2, establishing the first property.5 For the second property, note

that since |z| is a distance, |z| ≥ 0. Furthermore, |z| = 0 if and only if the distance from z to 0 is
0, and the latter happens if and only if z = 0, which is what we were asked to show.6 For the third
property, we note that since a = Re(z) and b = Im(z), z =

√
a2 + b2 =

√
Re(z)2 + Im(z)2.

To prove the product rule, suppose z = a+ bi and w = c+ di for real numbers a, b, c and d. Then
zw = (a+ bi)(c+ di). After the usual arithmetic7 we get zw = (ac− bd) + (ad+ bc)i. Therefore,

|zw| =
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2 Expand

=
√
a2c2 + a2d2 + b2c2 + b2d2 Rearrange terms

=
√
a2 (c2 + d2) + b2 (c2 + d2) Factor

=
√

(a2 + b2) (c2 + d2) Factor

=
√
a2 + b2

√
c2 + d2 Product Rule for Radicals

= |z||w| Definition of |z| and |w|
Hence |zw| = |z||w| as required.

Now that the Product Rule has been established, we use it and the Principle of Mathematical
Induction8 to prove the power rule. Let P (n) be the statement |zn| = |z|n. Then P (1) is true since∣∣z1
∣∣ = |z| = |z|1. Next, assume P (k) is true. That is, assume

∣∣zk∣∣ = |z|k for some k ≥ 1. Our job
is to show that P (k + 1) is true, namely

∣∣zk+1
∣∣ = |z|k+1. As is customary with induction proofs,

we first try to reduce the problem in such a way as to use the Induction Hypothesis.∣∣zk+1
∣∣ =

∣∣zkz∣∣ Properties of Exponents

=
∣∣zk∣∣ |z| Product Rule

= |z|k|z| Induction Hypothesis

= |z|k+1 Properties of Exponents

Hence, P (k + 1) is true, which means |zn| = |z|n is true for all natural numbers n.

Like the Power Rule, the Quotient Rule can also be established with the help of the Product Rule.
We assume w 6= 0 (so |w| 6= 0) and we get∣∣∣ z

w

∣∣∣ =

∣∣∣∣(z)( 1

w

)∣∣∣∣
= |z|

∣∣∣∣ 1

w

∣∣∣∣ Product Rule.

5Since the absolute value |x| of a real number x can be viewed as the distance from x to 0 on the number line,
this first property justifies the notation |z| for modulus. We leave it to the reader to show that if z is real, then the
definition of modulus coincides with absolute value so the notation |z| is unambiguous.

6This may be considered by some to be a bit of a cheat, so we work through the underlying Algebra to see this is
true. We know |z| = 0 if and only if

√
a2 + b2 = 0 if and only if a2 + b2 = 0, which is true if and only if a = b = 0.

The latter happens if and only if z = a+ bi = 0. There.
7See Example 3.4.1 in Section 3.4 for a review of complex number arithmetic.
8See Section 9.3 for a review of this technique.
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Hence, the proof really boils down to showing
∣∣ 1
w

∣∣ = 1
|w| . This is left as an exercise.

Next, we characterize the argument of a complex number in terms of its real and imaginary parts.

Theorem 11.15. Properties of the Argument: Let z be a complex number.

• If Re(z) 6= 0 and θ ∈ arg(z), then tan(θ) = Im(z)
Re(z) .

• If Re(z) = 0 and Im(z) > 0, then arg(z) =
{
π
2 + 2πk | k is an integer

}
.

• If Re(z) = 0 and Im(z) < 0, then arg(z) =
{
−π

2 + 2πk | k is an integer
}

.

• If Re(z) = Im(z) = 0, then z = 0 and arg(z) = (−∞,∞).

To prove Theorem 11.15, suppose z = a+bi for real numbers a and b. By definition, a = Re(z) and
b = Im(z), so the point associated with z is (a, b) = (Re(z), Im(z)). From Section 11.4, we know

that if (r, θ) is a polar representation for (Re(z), Im(z)), then tan(θ) = Im(z)
Re(z) , provided Re(z) 6= 0.

If Re(z) = 0 and Im(z) > 0, then z lies on the positive imaginary axis. Since we take r > 0, we
have that θ is coterminal with π

2 , and the result follows. If Re(z) = 0 and Im(z) < 0, then z lies
on the negative imaginary axis, and a similar argument shows θ is coterminal with −π

2 . The last
property in the theorem was already discussed in the remarks following Definition 11.2.

Our next goal is to completely marry the Geometry and the Algebra of the complex numbers. To
that end, consider the figure below.

Real Axis

Imaginary Axis

(a, b)←→ z = a+ bi←→ (r, θ)

0

θ ∈ arg(z)

a

bi

|z|
=

√ a
2 +

b2
=
r

Polar coordinates, (r, θ) associated with z = a+ bi with r ≥ 0.

We know from Theorem 11.7 that a = r cos(θ) and b = r sin(θ). Making these substitutions for a
and b gives z = a+ bi = r cos(θ) + r sin(θ)i = r [cos(θ) + i sin(θ)]. The expression ‘cos(θ) + i sin(θ)’
is abbreviated cis(θ) so we can write z = rcis(θ). Since r = |z| and θ ∈ arg(z), we get

Definition 11.3. A Polar Form of a Complex Number: Suppose z is a complex number
and θ ∈ arg(z). The expression:

|z|cis(θ) = |z| [cos(θ) + i sin(θ)]

is called a polar form for z.
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Since there are infinitely many choices for θ ∈ arg(z), there infinitely many polar forms for z, so
we used the indefinite article ‘a’ in Definition 11.3. It is time for an example.

Example 11.7.2.

1. Find the rectangular form of the following complex numbers. Find Re(z) and Im(z).

(a) z = 4cis
(

2π
3

)
(b) z = 2cis

(
−3π

4

)
(c) z = 3cis(0) (d) z = cis

(
π
2

)
2. Use the results from Example 11.7.1 to find a polar form of the following complex numbers.

(a) z =
√

3− i (b) z = −2 + 4i (c) z = 3i (d) z = −117

Solution.

1. The key to this problem is to write out cis(θ) as cos(θ) + i sin(θ).

(a) By definition, z = 4cis
(

2π
3

)
= 4

[
cos
(

2π
3

)
+ i sin

(
2π
3

)]
. After some simplifying, we get

z = −2 + 2i
√

3, so that Re(z) = −2 and Im(z) = 2
√

3.

(b) Expanding, we get z = 2cis
(
−3π

4

)
= 2

[
cos
(
−3π

4

)
+ i sin

(
−3π

4

)]
. From this, we find

z = −
√

2− i
√

2, so Re(z) = −
√

2 = Im(z).

(c) We get z = 3cis(0) = 3 [cos(0) + i sin(0)] = 3. Writing 3 = 3 + 0i, we get Re(z) = 3 and
Im(z) = 0, which makes sense seeing as 3 is a real number.

(d) Lastly, we have z = cis
(
π
2

)
= cos

(
π
2

)
+ i sin

(
π
2

)
= i. Since i = 0 + 1i, we get Re(z) = 0

and Im(z) = 1. Since i is called the ‘imaginary unit,’ these answers make perfect sense.

2. To write a polar form of a complex number z, we need two pieces of information: the modulus
|z| and an argument (not necessarily the principal argument) of z. We shamelessly mine our
solution to Example 11.7.1 to find what we need.

(a) For z =
√

3 − i, |z| = 2 and θ = −π
6 , so z = 2cis

(
−π

6

)
. We can check our answer by

converting it back to rectangular form to see that it simplifies to z =
√

3− i.
(b) For z = −2 + 4i, |z| = 2

√
5 and θ = π − arctan(2). Hence, z = 2

√
5cis(π − arctan(2)).

It is a good exercise to actually show that this polar form reduces to z = −2 + 4i.

(c) For z = 3i, |z| = 3 and θ = π
2 . In this case, z = 3cis

(
π
2

)
. This can be checked

geometrically. Head out 3 units from 0 along the positive real axis. Rotating π
2 radians

counter-clockwise lands you exactly 3 units above 0 on the imaginary axis at z = 3i.

(d) Last but not least, for z = −117, |z| = 117 and θ = π. We get z = 117cis(π). As with
the previous problem, our answer is easily checked geometrically.
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The following theorem summarizes the advantages of working with complex numbers in polar form.

Theorem 11.16. Products, Powers and Quotients Complex Numbers in Polar Form:
Suppose z and w are complex numbers with polar forms z = |z|cis(α) and w = |w|cis(β). Then

• Product Rule: zw = |z||w|cis(α+ β)

• Power Rule (DeMoivre’s Theorem) : zn = |z|ncis(nθ) for every natural number n

• Quotient Rule:
z

w
=
|z|
|w|

cis(α− β), provided |w| 6= 0

The proof of Theorem 11.16 requires a healthy mix of definition, arithmetic and identities. We first
start with the product rule.

zw = [|z|cis(α)] [|w|cis(β)]

= |z||w| [cos(α) + i sin(α)] [cos(β) + i sin(β)]

We now focus on the quantity in brackets on the right hand side of the equation.

[cos(α) + i sin(α)] [cos(β) + i sin(β)] = cos(α) cos(β) + i cos(α) sin(β)
+ i sin(α) cos(β) + i2 sin(α) sin(β)

= cos(α) cos(β) + i2 sin(α) sin(β) Rearranging terms
+ i sin(α) cos(β) + i cos(α) sin(β)

= (cos(α) cos(β)− sin(α) sin(β)) Since i2 = −1
+ i (sin(α) cos(β) + cos(α) sin(β)) Factor out i

= cos(α+ β) + i sin(α+ β) Sum identities

= cis(α+ β) Definition of ‘cis’

Putting this together with our earlier work, we get zw = |z||w|cis(α+ β), as required.

Moving right along, we next take aim at the Power Rule, better known as DeMoivre’s Theorem.9

We proceed by induction on n. Let P (n) be the sentence zn = |z|ncis(nθ). Then P (1) is true, since
z1 = z = |z|cis(θ) = |z|1cis(1 · θ). We now assume P (k) is true, that is, we assume zk = |z|kcis(kθ)
for some k ≥ 1. Our goal is to show that P (k + 1) is true, or that zk+1 = |z|k+1cis((k + 1)θ). We
have

zk+1 = zkz Properties of Exponents

=
(
|z|kcis(kθ)

)
(|z|cis(θ)) Induction Hypothesis

=
(
|z|k|z|

)
cis(kθ + θ) Product Rule

= |z|k+1cis((k + 1)θ)

9Compare this proof with the proof of the Power Rule in Theorem 11.14.

http://en.wikipedia.org/wiki/Abraham_de_Moivre
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Hence, assuming P (k) is true, we have that P (k + 1) is true, so by the Principle of Mathematical
Induction, zn = |z|ncis(nθ) for all natural numbers n.

The last property in Theorem 11.16 to prove is the quotient rule. Assuming |w| 6= 0 we have

z

w
=
|z|cis(α)

|w|cis(β)

=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)

Next, we multiply both the numerator and denominator of the right hand side by (cos(β)−i sin(β))
which is the complex conjugate of (cos(β) + i sin(β)) to get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)
· cos(β)− i sin(β)

cos(β)− i sin(β)

If we let the numerator be N = [cos(α) + i sin(α)] [cos(β)− i sin(β)] and simplify we get

N = [cos(α) + i sin(α)] [cos(β)− i sin(β)]

= cos(α) cos(β)− i cos(α) sin(β) + i sin(α) cos(β)− i2 sin(α) sin(β) Expand

= [cos(α) cos(β) + sin(α) sin(β)] + i [sin(α) cos(β)− cos(α) sin(β)] Rearrange and Factor

= cos(α− β) + i sin(α− β) Difference Identities

= cis(α− β) Definition of ‘cis’

If we call the denominator D then we get

D = [cos(β) + i sin(β)] [cos(β)− i sin(β)]

= cos2(β)− i cos(β) sin(β) + i cos(β) sin(β)− i2 sin2(β) Expand

= cos2(β)− i2 sin2(β) Simplify

= cos2(β) + sin2(β) Again, i2 = −1

= 1 Pythagorean Identity

Putting it all together, we get

z

w
=

(
|z|
|w|

)
cos(α) + i sin(α)

cos(β) + i sin(β)
· cos(β)− i sin(β)

cos(β)− i sin(β)

=

(
|z|
|w|

)
cis(α− β)

1

=
|z|
|w|

cis(α− β)

and we are done. The next example makes good use of Theorem 11.16.
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Example 11.7.3. Let z = 2
√

3 + 2i and w = −1 + i
√

3. Use Theorem 11.16 to find the following.

1. zw 2. w5 3.
z

w

Write your final answers in rectangular form.

Solution. In order to use Theorem 11.16, we need to write z and w in polar form. For z = 2
√

3+2i,

we find |z| =
√

(2
√

3)2 + (2)2 =
√

16 = 4. If θ ∈ arg(z), we know tan(θ) = Im(z)
Re(z) = 2

2
√

3
=
√

3
3 . Since

z lies in Quadrant I, we have θ = π
6 + 2πk for integers k. Hence, z = 4cis

(
π
6

)
. For w = −1 + i

√
3,

we have |w| =
√

(−1)2 + (
√

3)2 = 2. For an argument θ of w, we have tan(θ) =
√

3
−1 = −

√
3. Since

w lies in Quadrant II, θ = 2π
3 + 2πk for integers k and w = 2cis

(
2π
3

)
. We can now proceed.

1. We get zw =
(
4cis

(
π
6

)) (
2cis

(
2π
3

))
= 8cis

(
π
6 + 2π

3

)
= 8cis

(
5π
6

)
= 8

[
cos
(

5π
6

)
+ i sin

(
5π
6

)]
.

After simplifying, we get zw = −4
√

3 + 4i.

2. We use DeMoivre’s Theorem which yields w5 =
[
2cis

(
2π
3

)]5
= 25cis

(
5 · 2π

3

)
= 32cis

(
10π
3

)
.

Since 10π
3 is coterminal with 4π

3 , we get w5 = 32
[
cos
(

4π
3

)
+ i sin

(
4π
3

)]
= −16− 16i

√
3.

3. Last, but not least, we have
z

w
=

4cis(π6 )
2cis( 2π

3 )
= 4

2cis
(
π
6 −

2π
3

)
= 2cis

(
−π

2

)
. Since −π

2 is a

quadrantal angle, we can ‘see’ the rectangular form by moving out 2 units along the positive
real axis, then rotating π

2 radians clockwise to arrive at the point 2 units below 0 on the
imaginary axis. The long and short of it is that z

w = −2i.

Some remarks are in order. First, the reader may not be sold on using the polar form of complex
numbers to multiply complex numbers – especially if they aren’t given in polar form to begin with.
Indeed, a lot of work was needed to convert the numbers z and w in Example 11.7.3 into polar form,
compute their product, and convert back to rectangular form – certainly more work than is required
to multiply out zw = (2

√
3 + 2i)(−1 + i

√
3) the old-fashioned way. However, Theorem 11.16 pays

huge dividends when computing powers of complex numbers. Consider how we computed w5 above
and compare that to using the Binomial Theorem, Theorem 9.4, to accomplish the same feat by
expanding (−1 + i

√
3)5. Division is tricky in the best of times, and we saved ourselves a lot of

time and effort using Theorem 11.16 to find and simplify z
w using their polar forms as opposed to

starting with 2
√

3+2i
−1+i

√
3
, rationalizing the denominator, and so forth.

There is geometric reason for studying these polar forms and we would be derelict in our duties if
we did not mention the Geometry hidden in Theorem 11.16. Take the product rule, for instance. If
z = |z|cis(α) and w = |w|cis(β), the formula zw = |z||w|cis(α+ β) can be viewed geometrically as
a two step process. The multiplication of |z| by |w| can be interpreted as magnifying10 the distance
|z| from z to 0, by the factor |w|. Adding the argument of w to the argument of z can be interpreted
geometrically as a rotation of β radians counter-clockwise.11 Focusing on z and w from Example

10Assuming |w| > 1.
11Assuming β > 0.



998 Applications of Trigonometry

11.7.3, we can arrive at the product zw by plotting z, doubling its distance from 0 (since |w| = 2),
and rotating 2π

3 radians counter-clockwise. The sequence of diagrams below attempts to describe
this process geometrically.

Real Axis

Imaginary Axis

0

z = 4cis
(
π
6

)
z|w| = 8cis

(
π
6

)

1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Real Axis

Imaginary Axis

0

zw = 8cis
(
π
6

+ 2π
3

)
z|w| = 8cis

(
π
6

)

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Multiplying z by |w| = 2. Rotating counter-clockwise by Arg(w) = 2π
3

radians.

Visualizing zw for z = 4cis
(
π
6

)
and w = 2cis

(
2π
3

)
.

We may also visualize division similarly. Here, the formula z
w = |z|

|w|cis(α − β) may be interpreted

as shrinking12 the distance from 0 to z by the factor |w|, followed up by a clockwise13 rotation of β
radians. In the case of z and w from Example 11.7.3, we arrive at z

w by first halving the distance
from 0 to z, then rotating clockwise 2π

3 radians.

Real Axis

Imaginary Axis

0

(
1
|w|

)
z = 2cis

(
π
6

)
z = 4cis

(
π
6

)

1 2 3

i

2i

3i

Real Axis

Imaginary Axis

0

zw = 2cis
(
π
6

2π
3

)

(
1
|w|

)
z = 2cis

(
π
6

)

1 2 3

−2i

−i

i

Dividing z by |w| = 2. Rotating clockwise by Arg(w) = 2π
3

radians.

Visualizing
z

w
for z = 4cis

(
π
6

)
and w = 2cis

(
2π
3

)
.

Our last goal of the section is to reverse DeMoivre’s Theorem to extract roots of complex numbers.

Definition 11.4. Let z and w be complex numbers. If there is a natural number n such that
wn = z, then w is an nth root of z.

Unlike Definition 5.4 in Section 5.3, we do not specify one particular prinicpal nth root, hence the
use of the indefinite article ‘an’ as in ‘an nth root of z’. Using this definition, both 4 and −4 are

12Again, assuming |w| > 1.
13Again, assuming β > 0.
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square roots of 16, while
√

16 means the principal square root of 16 as in
√

16 = 4. Suppose we
wish to find all complex third (cube) roots of 8. Algebraically, we are trying to solve w3 = 8. We
know that there is only one real solution to this equation, namely w = 3

√
8 = 2, but if we take the

time to rewrite this equation as w3 − 8 = 0 and factor, we get (w − 2)
(
w2 + 2w + 4

)
= 0. The

quadratic factor gives two more cube roots w = −1± i
√

3, for a total of three cube roots of 8. In
accordance with Theorem 3.14, since the degree of p(w) = w3− 8 is three, there are three complex
zeros, counting multiplicity. Since we have found three distinct zeros, we know these are all of the
zeros, so there are exactly three distinct cube roots of 8. Let us now solve this same problem using
the machinery developed in this section. To do so, we express z = 8 in polar form. Since z = 8 lies
8 units away on the positive real axis, we get z = 8cis(0). If we let w = |w|cis(α) be a polar form
of w, the equation w3 = 8 becomes

w3 = 8

(|w|cis(α))3 = 8cis(0)

|w|3cis(3α) = 8cis(0) DeMoivre’s Theorem

The complex number on the left hand side of the equation corresponds to the point with polar
coordinates

(
|w|3, 3α

)
, while the complex number on the right hand side corresponds to the point

with polar coordinates (8, 0). Since |w| ≥ 0, so is |w|3, which means
(
|w|3, 3α

)
and (8, 0) are

two polar representations corresponding to the same complex number, both with positive r values.
From Section 11.4, we know |w|3 = 8 and 3α = 0 + 2πk for integers k. Since |w| is a real number,
we solve |w|3 = 8 by extracting the principal cube root to get |w| = 3

√
8 = 2. As for α, we get

α = 2πk
3 for integers k. This produces three distinct points with polar coordinates corresponding to

k = 0, 1 and 2: specifically (2, 0),
(
2, 2π

3

)
and

(
2, 4π

3

)
. These correspond to the complex numbers

w0 = 2cis(0), w1 = 2cis
(

2π
3

)
and w2 = 2cis

(
4π
3

)
, respectively. Writing these out in rectangular form

yields w0 = 2, w1 = −1 + i
√

3 and w2 = −1− i
√

3. While this process seems a tad more involved
than our previous factoring approach, this procedure can be generalized to find, for example, all of
the fifth roots of 32. (Try using Chapter 3 techniques on that!) If we start with a generic complex
number in polar form z = |z|cis(θ) and solve wn = z in the same manner as above, we arrive at the
following theorem.

Theorem 11.17. The nth roots of a Complex Number: Let z 6= 0 be a complex number
with polar form z = rcis(θ). For each natural number n, z has n distinct nth roots, which we
denote by w0, w1, . . . , wn− 1, and they are given by the formula

wk = n
√
rcis

(
θ

n
+

2π

n
k

)
The proof of Theorem 11.17 breaks into to two parts: first, showing that each wk is an nth root, and
second, showing that the set {wk | k = 0, 1, . . . , (n− 1)} consists of n different complex numbers.
To show wk is an nth root of z, we use DeMoivre’s Theorem to show (wk)

n = z.
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(wk)
n =

(
n
√
rcis

(
θ
n + 2π

n k
))n

= ( n
√
r)
n

cis
(
n ·
[
θ
n + 2π

n k
])

DeMoivre’s Theorem

= rcis (θ + 2πk)

Since k is a whole number, cos(θ+ 2πk) = cos(θ) and sin(θ+ 2πk) = sin(θ). Hence, it follows that
cis(θ + 2πk) = cis(θ), so (wk)

n = rcis(θ) = z, as required. To show that the formula in Theorem
11.17 generates n distinct numbers, we assume n ≥ 2 (or else there is nothing to prove) and note
that the modulus of each of the wk is the same, namely n

√
r. Therefore, the only way any two of

these polar forms correspond to the same number is if their arguments are coterminal – that is, if
the arguments differ by an integer multiple of 2π. Suppose k and j are whole numbers between 0
and (n−1), inclusive, with k 6= j. Since k and j are different, let’s assume for the sake of argument

that k > j. Then
(
θ
n + 2π

n k
)
−
(
θ
n + 2π

n j
)

= 2π
(
k−j
n

)
. For this to be an integer multiple of 2π,

(k − j) must be a multiple of n. But because of the restrictions on k and j, 0 < k − j ≤ n − 1.
(Think this through.) Hence, (k − j) is a positive number less than n, so it cannot be a multiple
of n. As a result, wk and wj are different complex numbers, and we are done. By Theorem 3.14,
we know there at most n distinct solutions to wn = z, and we have just found all of them. We
illustrate Theorem 11.17 in the next example.

Example 11.7.4. Use Theorem 11.17 to find the following:

1. both square roots of z = −2 + 2i
√

3

2. the four fourth roots of z = −16

3. the three cube roots of z =
√

2 + i
√

2

4. the five fifth roots of z = 1.

Solution.

1. We start by writing z = −2 + 2i
√

3 = 4cis
(

2π
3

)
. To use Theorem 11.17, we identify r = 4,

θ = 2π
3 and n = 2. We know that z has two square roots, and in keeping with the notation

in Theorem 11.17, we’ll call them w0 and w1. We get w0 =
√

4cis
(

(2π/3)
2 + 2π

2 (0)
)

= 2cis
(
π
3

)
and w1 =

√
4cis

(
(2π/3)

2 + 2π
2 (1)

)
= 2cis

(
4π
3

)
. In rectangular form, the two square roots of

z are w0 = 1 + i
√

3 and w1 = −1 − i
√

3. We can check our answers by squaring them and
showing that we get z = −2 + 2i

√
3.

2. Proceeding as above, we get z = −16 = 16cis(π). With r = 16, θ = π and n = 4, we get the
four fourth roots of z to be w0 = 4

√
16cis

(
π
4 + 2π

4 (0)
)

= 2cis
(
π
4

)
, w1 = 4

√
16cis

(
π
4 + 2π

4 (1)
)

=

2cis
(

3π
4

)
, w2 = 4

√
16cis

(
π
4 + 2π

4 (2)
)

= 2cis
(

5π
4

)
and w3 = 4

√
16cis

(
π
4 + 2π

4 (3)
)

= 2cis
(

7π
4

)
.

Converting these to rectangular form gives w0 =
√

2+i
√

2, w1 = −
√

2+i
√

2, w2 = −
√

2−i
√

2
and w3 =

√
2− i

√
2.
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3. For z =
√

2+i
√

2, we have z = 2cis
(
π
4

)
. With r = 2, θ = π

4 and n = 3 the usual computations

yield w0 = 3
√

2cis
(
π
12

)
, w1 = 3

√
2cis

(
9π
12

)
= 3
√

2cis
(

3π
4

)
and w2 = 3

√
2cis

(
17π
12

)
. If we were

to convert these to rectangular form, we would need to use either the Sum and Difference
Identities in Theorem 10.16 or the Half-Angle Identities in Theorem 10.19 to evaluate w0 and
w2. Since we are not explicitly told to do so, we leave this as a good, but messy, exercise.

4. To find the five fifth roots of 1, we write 1 = 1cis(0). We have r = 1, θ = 0 and n = 5.
Since 5

√
1 = 1, the roots are w0 = cis(0) = 1, w1 = cis

(
2π
5

)
, w2 = cis

(
4π
5

)
, w3 = cis

(
6π
5

)
and

w4 = cis
(

8π
5

)
. The situation here is even graver than in the previous example, since we have

not developed any identities to help us determine the cosine or sine of 2π
5 . At this stage, we

could approximate our answers using a calculator, and we leave this as an exercise.

Now that we have done some computations using Theorem 11.17, we take a step back to look
at things geometrically. Essentially, Theorem 11.17 says that to find the nth roots of a complex
number, we first take the nth root of the modulus and divide the argument by n. This gives the
first root w0. Each succeessive root is found by adding 2π

n to the argument, which amounts to
rotating w0 by 2π

n radians. This results in n roots, spaced equally around the complex plane. As
an example of this, we plot our answers to number 2 in Example 11.7.4 below.

Real Axis

Imaginary Axis

0

w0w1

w2 w3

−2 −1 1 2

−2i

−i

i

2i

The four fourth roots of z = −16 equally spaced 2π
4

= π
2

around the plane.

We have only glimpsed at the beauty of the complex numbers in this section. The complex plane
is without a doubt one of the most important mathematical constructs ever devised. Coupled with
Calculus, it is the venue for incredibly important Science and Engineering applications.14 For now,
the following exercises will have to suffice.

14For more on this, see the beautifully written epilogue to Section 3.4 found on page 293.


