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Simple Harmonic Motion

INTRODUCTION

Have you ever wondered why a grandfather clock keeps accurate time? The motion of the
pendulum is a particular kind of repetitive or periodic motion called simple harmonic motion, or
SHM.1 The position of the oscillating object varies sinusoidally with time. Many objects oscillate
back and forth. The motion of a child on a swing can be approximated to be sinusoidal and can
therefore be considered as simple harmonic motion. Some complicated motions like turbulent water
waves are not considered simple harmonic motion.

When an object is in simple harmonic motion, the rate at which it oscillates back and forth as
well as its position with respect to time can be easily determined. In this lab, you will analyze a
simple pendulum and a spring-mass system, both of which exhibit simple harmonic motion.

DISCUSSION OF PRINCIPLES

A particle that vibrates vertically in simple harmonic motion moves up and down between two
extremes y = ±A. The maximum displacement A is called the amplitude. This motion2 is shown
graphically in the position-versus-time plot in Fig. 1.

Figure 1: Position plot showing sinusoidal motion of an object in SHM

One complete oscillation or cycle or vibration is the motion from, for example, y = −A to
y = +A and back again to y = −A. The time interval T required to complete one oscillation
is called the period. A related quantity is the frequency f, which is the number of vibrations the
system makes per unit of time. The frequency is the reciprocal of the period and is measured in
units of Hertz, abbreviated Hz; 1 Hz = 1 s−1.

1http://en.wikipedia.org/wiki/Simple harmonic motion
2http://upload.wikimedia.org/wikipedia/commons/7/74/Simple harmonic motion animation.gif
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f = 1/T (1)

If a particle is oscillating along the y-axis, its location on the y-axis at any given instant of time
t, measured from the start of the oscillation is given by the equation

y = A sin(2πft) (2)

Recall that the velocity of the object is the first derivative and the acceleration the second
derivative of the displacement function with respect to time. The velocity v and the acceleration a
of the particle at time t are given by

v = 2πfA cos(2πft) (3)

a = −(2πf)2[A sin(2πft)] (4)

Notice that the velocity and acceleration are also sinusoidal. However the velocity function
has a 90◦ or π/2 phase difference while the acceleration function has a 180◦ or π phase difference
relative to the displacement function. For example, when the displacement is positive maximum,
the velocity is zero and the acceleration is negative maximum.

Substituting from Eq. (1) into Eq. (4) yields

a = −4π2f2y (5)

From Eq. (5) we see that the acceleration of an object in SHM is proportional to the displacement
and opposite in sign. This is a basic property of any object undergoing simple harmonic motion.

Consider several critical points in a cycle as in the case of a spring-mass system3 in oscillation.
A spring-mass system consists of a mass attached to the end of a spring that is suspended from
a stand. The mass is pulled down by a small amount and released to make the spring and mass
oscillate in the vertical plane. Figure 2 shows five critical points as the mass on a spring goes
through a complete cycle. The equilibrium position for a spring-mass system is the position of the
mass when the spring is neither stretched nor compressed.

3http://en.wikipedia.org/wiki/Oscillation
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Figure 2: Five key points of a mass oscillating on a spring.

The mass completes an entire cycle as it goes from position A to position E. Description of each
position is as follows:

Position A: The spring is compressed; the mass is above the equilibrium point at y = A and is
about to be released.

Position B: The mass is in downward motion as it passes through the equilibrium point.

Position C: The mass is momentarily at rest at the lowest point before starting on its upward
motion.

Position D: The mass is in upward motion as it passes through the equilibrium point.

Position E: The mass is momentarily at rest at the highest point before starting back down
again.

By noting the time when the negative maximum, positive maximum, and zero values occur
for the oscillating object’s position, velocity and acceleration, you can graph the sine (or cosine)
function. This is done for the case of the oscillating spring-mass system in the table below and the
three functions are shown in Fig. 3. Note that the positive direction is typically chosen to be the
direction that the spring is stretched. Therefore, the positive direction in this case is down and the
initial position A in Fig. 2 is actually a negative value. The most difficult parameter to analyze
is the acceleration. It helps to use Newton’s second law, which tells us that a negative maximum
acceleration occurs when the net force is negative maximum, a positive maximum acceleration
occurs when the net force is positive maximum and the acceleration is zero when the net force is
zero.
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Figure 3: Position, velocity and acceleration vs. time

For this particular initial condition (starting position at A in Fig. 2), the position curve is a
cosine function (actually a negative cosine function), the velocity curve is a sine function, and the
acceleration curve is just the negative of the position curve.

Mass and Spring

A mass suspended at the end of a spring will stretch the spring by some distance y. The force
with which the spring pulls upward on the mass is given by Hooke’s law4

F = −ky (6)

where k is the spring constant and y is the stretch in the spring when a force F is applied to the
spring. The spring constant k is a measure of the stiffness of the spring.

The spring constant can be determined experimentally by allowing the mass to hang motionless
on the spring and then adding additional mass and recording the additional spring stretch as
shown below. In Fig. 4a the weight hanger is suspended from the end of the spring. In Fig. 4b, an
additional mass has been added to the hanger and the spring is now extended by an amount ∆y.
This experimental set-up is also shown in the photograph of the apparatus in Fig. 5.

4http://en.wikipedia.org/wiki/Hooke’s law
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Figure 4: Set up for determining spring constant

Figure 5: Photo of experimental set-up

When the mass is motionless, its acceleration is zero. According to Newton’s second law the net
force must therefore be zero. There are two forces acting on the mass; the downward gravitational
force and the upward spring force. See the free-body diagram in Fig. 6 below.

Figure 6: Free-body diagram for the spring-mass system

So Newton’s second law gives us
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∆mg − k∆y = 0 (7)

where ∆m is the change in mass and ∆y is the change in the stretch of the spring caused by the
change in mass, g is the gravitational acceleration, and k is the spring constant. Eq. (7) can also
be expressed as

∆m =
k

g
∆y. (8)

Newton’s second law applied to this system is ma = F = −ky. Substitute from Eq. (5) for the
acceleration to get

m(−4π2f2y) = −ky (9)

from which we get an expression for the frequency f and the period T.

f = 1
2π

√
k

m
(10)

T = 2π

√
m

k
(11)

Using Eq. (11) we can predict the period if we know the mass on the spring and the spring
constant. Alternately, knowing the mass on the spring and experimentally measuring the period,
we can determine the spring constant of the spring.

Notice that in Eq. (11) the relationship between T and m is not linear. A graph of the period
versus the mass will not be a straight line. If we square both sides of Eq. (11), we get

T 2 = 4π2
m

k
. (12)

Now a graph of T 2 versus m will be a straight line and the spring constant can be determined from
the slope.

Simple Pendulum

The other example of simple harmonic motion that you will investigate is the simple pendulum.5

The simple pendulum consists of a mass m, called the pendulum bob, attached to the end of a
string. The length L of the simple pendulum is measured from the point of suspension of the string
to the center of the bob as shown in Fig. 7 below.

5http://en.wikipedia.org/wiki/Simple pendulum
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Figure 7: Experimental set-up for a simple pendulum

If the bob is moved away from the rest position through some angle of displacement θ as in
Fig. 7, the restoring force will return the bob back to the equilibrium position. The forces acting
on the bob are the force of gravity and the tension force of the string. The tension force of the
string is balanced by the component of the gravitational force that is in line with the string (i.e.
perpendicular to the motion of the bob). The restoring force here is the tangential component of
the gravitational force.

Figure 8: Simple pendulum

When we apply trigonometry to the smaller triangle in Fig. 8, we get the magnitude of the
restoring force |~F | = mg sin θ. This force depends on the mass of the bob, the acceleration due
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to gravity g and the sine of the angle through which the string has been pulled. Again Newton’s
second law must apply, so

ma = F = −mg sin θ (13)

where the negative sign implies that the restoring force acts opposite to the direction of motion of
the bob.

Since the bob is moving along the arc of a circle, the angular acceleration is given by α = a/L.
From Eq. (13) we get

α = − g
L

sin θ. (14)

In Fig. 9 the blue solid line is a plot of θ versus sin(θ) and the straight line is a plot of θ in degrees
versus θ in radians. For small angles these two curves are almost indistinguishable. Therefore, as
long as the displacement θ is small we can use the approximation sin θ ≈ θ

Figure 9: Graphs of sin θ versus θ

With this approximation Eq. (14) becomes

α = − g
L
θ. (15)

Equation (15) shows the (angular) acceleration to be proportional to the negative of the (angular)
displacement and therefore the motion of the bob is simple harmonic and we can apply Eq. (5) to
get

α = −4π2f2θ (16)
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Combining Eq. (15) and Eq. (16) and simplifying, we get

f =
1

2π

√
g

L
(17)

and

T = 2π

√
L

g
. (18)

Note that the frequency and period of the simple pendulum do not depend on the mass.

OBJECTIVE

The objective of this lab is to understand the behavior of objects in simple harmonic motion by
determining the spring constant of a spring-mass system and a simple pendulum.

EQUIPMENT

Assorted masses

Spring

Meter stick

Stand

Stopwatch

String

Pendulum bob

Protractor

PROCEDURE

Using Hooke’s law you will determine the spring constant of the spring by measuring the spring
stretch as additional masses are added to the spring. You will determine the period of oscillation
of the spring-mass system for different masses and use this to determine the spring constant. You
will then compare the spring constant values obtained by the two methods.

In the case of the simple pendulum, you will measure the period of oscillation for varying lengths
of the pendulum string and compare these values to the predicted values of the period.

Procedure A: Determining Spring Constant Using Hooke’s Law

1 Starting with 50 g, add masses in steps of 50 g to the hanger. As you add each 50 g mass,
measure the corresponding elongation y of the spring produced by the weight of these added
masses. Enter these values in Data Table 1.
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2 Use Excel to plot m versus y. See Appendix G.

3 Use the LINEST function to determine the slope and its uncertainty. Record these values on
the worksheet. See Appendix J.

4 Use the values of the slope and its uncertainty to determine the spring constant k of the spring
and the uncertainty in k. See Appendix C. Record these values on the worksheet.

5 Calculate the percent uncertainty in the value of k. See Appendix B.

CHECKPOINT 1: Ask your TA to check your table and Excel graph.

Procedure B: Determining Spring Constant from T 2 vs. m Graph

We have assumed the spring to be massless, but it has some mass, which will affect the period
of oscillation. Theory predicts and experience verifies that if one-third the mass of the spring were
added to the mass m in Eq. (11), the period will be the same as that of a mass of this total
magnitude, oscillating on a massless spring.6

6 Use the balance to measure the mass of the spring and record this on the worksheet.

Add one-third this mass to the oscillating mass before calculating the period of oscillation.

If the mass of the spring is much smaller than the oscillating mass, you do not have to add
one-third the mass of the spring.

7 Add 200 g to the hanger.

8 Pull the mass down a short distance and let go to produce a steady up and down motion
without side-sway or twist. As the mass moves downward past the equilibrium point, start the
clock and count “zero.” Then count every time the mass moves downward past the equilibrium
point, and on the 50th passage stop the clock.

9 Repeat step 8 two more times and record the values for the three trials in Data Table 2 and
determine an average time for 50 oscillations.

10 Determine the period from this average value and record this on the worksheet.

11 Repeat steps 8 through 10 for three other significantly different masses.

12 Use Excel to plot a graph of T 2 vs. m.

13 Use the LINEST function to determine the slope and its uncertainty. Record these values on
the worksheet.

14 Determine the spring constant k and its uncertainty from the slope and its uncertainty. Record
these values on the worksheet.

6http://en.wikipedia.org/wiki/Effective mass (spring-mass system)
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15 Calculate the percent uncertainty in the value of k.

16 Calculate the percent difference between this value of k and the value obtained in procedure
using Hooke’s law.

CHECKPOINT 2: Ask your TA to check your table values and calculations.

Procedure C: Simple Pendulum

17 Adjust the pendulum to the greatest length possible and firmly fasten the cord.

With a 2-meter stick, carefully measure the length of the string, including the length of the
pendulum bob.

Use a vernier caliper to measure the length of the pendulum bob. See Appendix D.

Subtract one-half of this value from the length previously measured to get the value of L and
record this in Data Table 3 on the worksheet.

18 Using the accepted value of 9.81 m/s2 for g, predict and record the period of the pendulum for
this value of L.

19 Pull the pendulum bob to one side and release it. Use as small an angle as possible, less than
10◦. Make sure the bob swings back and forth instead of moving in a circle.

Using the stopwatch measure the time required for 50 oscillations of the pendulum and record
this in Data Table 3.

20 Repeat step 19 two more times and record the values for the three trials in Data Table 3 and
determine an average time for 50 oscillations.

21 Determine the period from this average value and record this on the worksheet.

22 Calculate the percent error between this value and the predicted value of the period.

23 Repeat steps 18 through 22 for three other significantly different lengths.

CHECKPOINT 3: Ask your TA to check your table values and calculations.
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