
Answer to Essential Question 25.1 (a) The only points for which 
changing the wavelength has no impact on the interference of the waves 
are points for which the path-length difference is zero. Thus, the point in 
question must lie on the perpendicular bisector of the line joining the 
sources. (b) If we re-arrange Equation 25.3 to solve for the sine of the 
angle, we get

 .

Thus, decreasing the wavelength decreases sin θ, so the pattern gets 
tighter. Decreasing d, the distance between the sources, has the opposite 
effect, with the pattern spreading out. We can understand the wavelength 
effect conceptually in that, when the wavelength decreases, we don’t 
have to go as far from the perpendicular bisector to locate points that are 
half a wavelength (or a full wavelength) farther from one source than the 
other. Figure 25.3 shows the effect of decreasing the wavelength, or of 
decreasing the distance between the sources.

25-2 The Diffraction Grating
Now that we understand what happens when we have two sources emitting waves that interfere, 
let’s see if we can understand what happens when we add additional sources. The distance d 
between neighboring sources is the same as the distance between the original two sources, and the 
sources are arranged in a line. All the sources emit identical waves that are in phase.

EXPLORATION 25.2A – Adding sources
Step 1 – Consider a point a long way from two 
sources. The sources are a distance d apart. The 
point is one wavelength farther from one source 
than the other, so constructive interference 
occurs at the point. When we add a third source, 
so that we have three sources equally spaced in a 
line, separated by d, do we still get constructive 
interference taking place at the point?
Yes. As the diagram in Figure 25.4 shows, the 
path-length difference for the third source and the 
source it was placed closest to will also be one 
wavelength. Now we get constructive interference 
for three waves at once, not just two, so the amplitude of the 
resultant wave is larger than it was with only two sources.

Step 2 – If we consider a different point that is half a 
wavelength farther from one of two sources than the 
other, destructive interference occurs at the point. When we add a third source, so that we have 
three sources equally spaced in a line, separated by d, do we still get destructive interference 
taking place at the point?
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Figure 25.3: The top diagram shows the interference pattern produced 
by two sources. The middle diagram shows the effect of decreasing the 
wavelength of the waves produced by the sources, while the bottom 
diagram shows the effect of decreasing the distance between the sources.

Figure 25.4: For a point that is one 
wavelength farther from one source 
than another, adding a third source 
results in even larger amplitude 
because of constructive interference.



No. The destructive interference at the point was caused by the cancellation between the waves 
from the first two sources. Adding a third source does not change the fact that the first two waves 
cancel one another, so there is nothing to cancel the third wave.

Step 3 – For three sources, what path-length difference (between zero and one wavelength) 
between neighboring sources results in completely destructive interference? With three sources, 
it turns out that there are two path-length differences between 0 and one wavelength that result in 
completely destructive interference, these being one-third and two-thirds of a wavelength.

Step 4 – What if we have N sources, where N is any integer greater than 1. Is there a general 
rule for predicting the angles at which constructive interference occurs? What about 
destructive interference? Constructive interference occurs at the same points for N sources that it 
does for 2 sources, so the equation  still applies for situations with N > 1 sources. 
There are N – 1 places where destructive interference happens in between each interference 
maximum, so we generally dispense with an equation for destructive interference when N > 2.

Key idea: The equation  applies to any number of sources > 1, as long as the 
sources are equally spaced. With multiple sources, it is much easier to produce destructive 
interference than it is to produce completely constructive interference, so there is no simple 
equation for destructive interference.              
Related End-of-Chapter Exercises: 7, 16 – 18, 38, 39, 48.

The Diffraction Grating
A diffraction grating is essentially a large number of equally 
spaced sources, and thus the  equation applies. 
One application of diffraction gratings is in spectroscopy, 
which involves separating light into its different wavelengths, 
a process that astronomers, or chemists, can use to determine 
the chemical makeup of the source producing the light. In 
actuality, a diffraction grating is typically a glass or plastic 
slide with a large number of slits (long thin openings between 
long thin lines). A diffraction grating (which should probably 
have been named an interference grating) offers two main 
advantages over a double slit. First, the more openings the 
light passes through, the brighter the interference maxima 
are. Second, the more openings there are, the narrower the 
bright lines are in the interference pattern, which is important 
when trying to resolve two similar wavelengths. Figure 25.5 
shows the increased sharpness that results from adding slits.

EXPLORATION 25.2B – Double-slit geometry
When light of a single wavelength (say, from a laser) is incident on a double slit (or a diffraction 
grating, which gives a sharper pattern), we get a pattern of bright and dark fringes on a screen 
beyond the double slit. Such a pattern is shown in Figure 25.6. The bright fringes come from 
constructive interference, and the dark fringes come from destructive interference.
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Figure 25.5: Adding sources (or slits that 
light goes through) results in sharper 
interference maxima. Each case shows the 
relative intensity at various points. The 
amplitude of the peaks also grows as 
sources are added.



Step 1 – If we wanted to increase the distance 
between the bright spots on the screen, what would 
we change about d or λ? 

This should be something of a review. If we re-
arrange the equation for constructive interference, we 
get:

sinθ =
mλ
d

.

Increasing the value of sinθ will increase the value of 
θ, which means that the lines of constructive 
interference will be further apart, in terms of the 
angles between them. This will spread out the pattern 
on the screen. To increase sinθ, we can either replace 
the first laser with a laser that emits light of a longer 
wavelength (switch from blue to red, for instance), or 
we can switch to a double slit that has a smaller value 
of d. These two options are illustrated in Figure 25.7.
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Figure 25.6: The geometry of the double-slit pattern, for blue light. The top shows an overview 
of the interference pattern. The bottom has the pattern of bright and dark fringes on the screen. In 
between is a graph of the intensity of the fringes in the pattern, as a function of position.

Figure 25.7: The pattern on the left shows how the situation of Figure 25.6 changes if we 
change to a larger wavelength, while the one on the left shows the change of switching to a 
smaller d.



Step 2 – What if we only have one laser and one 
double slit, so we can’t change the wavelength or d. Is 
there a different way to increase the distance between 
the bright spots on the screen?
Yes. If we move the screen farther from the double slit, 
the screen will intercept the light from the grating after 
the bright lines in the pattern have been able to spread 
out farther, increasing the distance between the bright 
spots on the screen. This is illustrated in Figure 25.8.

Step 3 – As shown in Figure 25.9, let’s use L to denote 
the distance from the double slit to the screen, and ym 
to denote the distance from the central bright spot on 
the screen to the mth bright spot. For instance, y4  is 
the distance from the center of the pattern to one of 
the m = 4 bright spots on the screen. If the angle is 
small (say, 10˚ or less), we can use the approximation 
sinθ ≈ tanθ. Using that assumption, derive an 
expression for ym in terms of d, m, λ, and L .
We have two equations to work with here, one for sinθ, 
from above, and then one for tanθ, from the geometry 
of right-angled triangles.

sinθ =
mλ
d

     and tanθ =
y
L

.

The small-angle approximation enables us to set these 
two equations equal to one another. Doing that and 
solving for y gives:

ym =
mλL
d

.  

(Eq. 25.5: The distance from the center of the 
pattern to the m’th bright spot)

Step 4 – What would you do if you wanted to predict 
the position of a particular bright spot on the screen, 
but you could not use the small-angle approximation? 
If we could not use the small-angle approximation, we 
could first use the sinθ equation to find θ, and then 
take the tangent of that angle when we were using 
the tanθ equation to find y.

Essential Question 25.2: A beam of light made up 
of three wavelengths, 660 nm (red light), 530 nm 
(green light), and 400 nm (violet light) is incident 
on a diffraction grating that has a spacing of 
d = 1300 nm. The first order spectrum, consisting of 
a violet line, a green line, and a red line, produced 
by the grating is shown in Figure 25.10. What are 
the colors of the other three beams (1 – 3) that 
come from the grating?
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Figure 25.9: The geometry of the pattern, 
based on a right-angled triangle.

Figure 25.8: Spreading the dots out by 
moving the screen farther away, starting 
from the left-hand picture in Figure 25.7.

Figure 25.10: The first-order (m = 1) spectrum for 
the situation of Essential Question 25.2.


