
Essential Physics Chapter 25 (Interference and Diffraction)  Solutions to Sample Problems 
 

PROBLEM 1 – 15 points 
 
 [5 points] (a) A green laser beam (λ = 532 nm in air) is incident on a double slit, creating an 
interference pattern of bright and dark spots on a screen some distance away. If you want 
the spots in the pattern to be closer together (measuring the distance between spots as the 
distance between their centers) which of the following changes could you make? Select all 
that apply. Grading scheme: +1 for each correct choice; –1 for each incorrect choice. 
Negative scores will be given zero. 

[   ] Replace the green laser by a red laser.   sin m
d
λθ =  

[ X ] Replace the green laser by a violet laser.  Smaller wavelength = closer spots 

[ X ] Increase d, the distance between the two slits. Larger d = closer spots 

[   ] Decrease d, the distance between the two slits. 

[   ] Increase the distance between the double slit and the screen. tan y
L

θ =  

[ X ] Decrease the distance between the double slit and the screen. y goes down 

[ X ] Immerse the entire apparatus in water.  Decreases the wavelength. 

[ X ] Immerse the entire apparatus in olive oil. Also decreases the wavelength. 

[   ] Replace the double slit by a diffraction grating, keeping d the same 

[   ] Use a beam of electrons instead of a green laser, with the electrons having a de Broglie 
wavelength of 532 nm. 
 
Now assume that the slits are separated by a distance of d = 5.32 x10-5 m. A screen is placed 
20 m away from the slits. 
Remember that for small angles we can use the approximation θθθ tansin ≈≈ . 
 
[5 points] (b) Find the spacing between the central maximum and one of the first-order 
maxima on the screen. 

sin m
d
λθ =   and tan y

L
θ = . Setting these equal gives: m Ly

d
λ

= . 

In this case, m = 1, and the wavelength divided by the grating spacing is 1/100. This 
gives a separation of y = 20 m / 100 = 20 cm. 
 
[5 points] (c) The entire apparatus is now immersed in a liquid that has an index of refraction 
n = 1.5. What is the new spacing between the central maximum and one of the first-order 
maxima on the screen? 
 
The wavelength decreases by a factor of 1.5 (the index of refraction) in this new 
medium, which reduces y by a factor of 1.5. The spacing shrinks to about 13.3 cm. 
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PROBLEM 2 – 15 points 
 
 
The diagram shows four 
situations in which light of 
wavelength  is incident 
perpendicularly on a very 
thin layer (the middle 
layer in each case). The 
indicated indices of 
refraction are n1 = 1.50 
and n2 = 2.00.  
 
[8 points] (a) In each case, consider what happens to the reflected light in the limit where the 
thickness of the thin layer approaches zero. 
 
(i) In case A, a thin-film thickness approaching zero causes the reflected light to be 

 
[ X ] eliminated by destructive interference  [   ] bright by constructive interference 
 
(ii) In case B, a thin-film thickness approaching zero causes the reflected light to be 

 
[ X ] eliminated by destructive interference  [   ] bright by constructive interference 
 
(iii) In case C, a thin-film thickness approaching zero causes the reflected light to be 

 
[   ] eliminated by destructive interference  [ X ] bright by constructive interference 
 
(iv) In case D, a thin-film thickness approaching zero causes the reflected light to be 

 
[   ] eliminated by destructive interference  [ X ] bright by constructive interference 
 
 
In this situation, the wave that goes down and back through the film travels no extra 
distance, because the film thickness approaches zero. Any effective path length 
difference comes from any half-wavelength shifts because of reflection from a higher-n 
medium. In both cases A and B, the wave reflecting from the top surface of the air film 
experiences no shift, but the wave reflecting from the bottom surface of the air film is 
inverted, which is equivalent to a half wavelength shift. The two reflected waves are 
shifted, in effect, by a half wavelength, and cancel one another by destructive 
interference. In cases C and D, we have a different situation. In case C, both waves are 
inverted, so they end up having no shift with respect to one another. In case D, neither 
wave is inverted, so they also have no shift with respect to one another. In both of these 
cases, because the two waves have a net shift of zero with respect to one another, they 
interfere constructively. 
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[7 points] (b) In case B, what is the minimum non-zero thickness of the thin-film that would 
produce destructive interference for reflected light if the wavelength of the incident light is 
600 nm (measured in air)? 
 
Let’s go through the five-step process to figure this out. 
 
Step 1: find the effective shift for the wave reflecting off the top surface of the film. 
For the wave traveling in medium 2, reflecting from the air, there is no inversion when 
the reflection occurs, because the wave is reflecting from a lower-n medium. Thus, the 
effective shift is 0t∆ = . 
 
Step 2: find the effective shift for the wave reflecting off the bottom surface of the film. 
This wave is traveling in air, and reflecting from a higher-n medium, which gives a half-
wavelength shift. The wave also travels down and back through the film, for an extra 
path-length distance of 2t, if we say the thickness of the air film is t. Thus, the effective 

shift is 2
2b t λ′

∆ = + . 

 
Step 3: find the net shift (the effective path-length difference) of the two waves by 
subtracting our result in step 1 from the result in step 2. This gives: 

2
2b t t λ′

∆ = ∆ −∆ = + . 

 
Step 4: bring in the appropriate interference condition. In this case, we want 

destructive interference, so we set our net shift equal to 1
2

m +  wavelengths. 

12
2 2

t mλ λ
′ ⎛ ⎞ ′+ = +⎜ ⎟

⎝ ⎠
. 

 
Step 5: Solve the equation, remembering that the wavelength in the equation is the 
wavelength in the thin film. In this case, the film is air, so we can use the 600 nm value 
stated above. 
 
Solving the equation, we get 2t mλ′= . To get the smallest non-zero thickness ( t ), we 
use the smallest non-zero integer for m, which is m = 1. 
 

This gives 600 nm 300 nm
2 2

t λ′
= = = . 
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PROBLEM 3  - 15 points  
 
A thin piece of glass with an index of refraction of n = 1.50 is placed on top 
of a medium that has an index of refraction n = 2.00. A beam of light 
traveling in air (n = 1.00) shines perpendicularly down on the glass. The 
beam contains light of only two colors, blue light with a wavelength in air 
of 450 nm and orange light with a wavelength in air of 600 nm. 
 
[5 points] (a) What is the minimum non-zero thickness of the glass that 
gives completely constructive interference for the blue light reflecting from the film? 
 
Once again, we can go through the five-step process, similar to that in the previous 
problem. 
 
Step 1: find the effective shift for the wave reflecting off the top surface of the film. 
The wave traveling in medium 1, reflecting from medium 2, experiences an inversion 
when the reflection occurs, because the wave is reflecting from a higher-n medium. This 

is, in effect, a half-wavelength shift. Thus, the effective shift is 
2t
λ′

∆ = . 

 
Step 2: find the effective shift for the wave reflecting off the bottom surface of the film. 
This wave also experiences a half-wavelength shift, because it reflects from a higher-n 
medium. The wave also travels down and back through the film, for an extra path-
length distance of 2t, if we say the thickness of the air film is t. Thus, the effective shift is 

2
2b t λ′

∆ = + . 

 
Step 3: find the net shift (the effective path-length difference) of the two waves by 
subtracting our result in step 1 from the result in step 2. This gives: 

2b t t∆ = ∆ −∆ = . 
 
Step 4: bring in the appropriate interference condition. In this case, we want 
constructive interference, so we set our net shift equal to m  wavelengths: 2t mλ′= . 
 
Step 5: Solve the equation, remembering that the wavelength in the equation is the 
wavelength in the thin film. In this case, the film has an index of refraction of 1.50, so 
we divide the wavelength in vacuum by the index of refraction to find the wavelength in 
the thin film. 
 
To get the smallest non-zero thickness ( t ), we use the smallest non-zero integer for m, 
which is m = 1. 
 

This gives 
2

450 nm 150 nm
2 2 1.50bluet
n
λ′

= = =
×

. 
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[5 points] (b) What is the minimum non-zero thickness of the glass that gives completely 
constructive interference for the orange light reflecting from the film? 
 
The analysis method here is the same as that in part (a), so we get the same equation, 
with a different value of wavelength. 
 

This gives 
2

600 nm 200 nm
2 2 1.50oranget
n
λ′

= = =
×

. 

 
 
 [5 points] (c) What is the minimum non-zero thickness of the glass that gives completely 
constructive interference for BOTH the blue and orange light simultaneously? 
 
Our equation tells us that the thicknesses that give constructive interference are integer 
multiples of the minimum non-zero thickness. Thus, the set of film thicknesses that give 
completely constructive interference for blue light consists of: 
 
tblue = 150 nm, 300 nm, 450 nm, 600 nm, 750 nm, … 
 
For orange light, we get integer multiples of 200 nm: 
 
torange = 200 nm, 400 nm, 600 nm, 800 nm, 1000 nm, … 
 
By comparing these two sets, we can see that the smallest thickness that gives 
completely constructive interference for both blue and orange light simultaneously is 
600 nm. 
 
 
 
 
 
 
 
 
 
 
 


