
Answer to Essential Question 14.4: All we need to do is to increase the temperature of the piston. 
Based on our analysis in Exploration 14.4, raising the absolute temperature by 20% moves the 
piston from the state labeled Piston 1 to that labeled Piston 2.

14-5 The Maxwell-Boltzmann Distribution; Equipartition
We come now to James Clerk Maxwell, the Scottish physicist who determined that the 

probability a molecule in a container of ideal gas has a particular speed v is given by:

, (Equation 14.15: Maxwell-Boltzmann distribution)

where M is the molar mass (mass of 1 mole) of the gas.

This distribution of speeds is known as the Maxwell-Boltzmann distribution, and it is 
characterized by three speeds. These are, in decreasing order:

;   (Equation 14.16: the rms speed)

;   (Equation 14.17: the average speed)

.  (Equation 14.18: the most probable speed)

Plots of the Maxwell-Boltzmann distribution are shown in Figure 14.9 for two different 
temperatures and two different monatomic gases, argon and helium. Table 14.1 shows the speeds 
characterizing the distributions. At low temperatures the molecules do not have much energy, on 
average, so the distribution clusters around the most probable speed. As temperature increases the 
distribution stretches out toward higher speeds. The area under the curve stays the same (it is the 
probability an atom has some velocity, which is 1) so the probability at the peak decreases. 
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Figure 14.9: Maxwell-Boltzmann distributions at two different temperatures, 120 K and 300 K, for 
monatomic argon gas (the darker and taller curves, for argon with a molar mass of 40 g) and 
monatomic helium gas (lighter and shorter curves, with a molar mass of 4 g). 



Table 14.1: The various speeds characterizing 
the Maxwell-Boltzmann distribution of speeds 
for monatomic argon gas, and for monatomic 
helium gas, at temperatures of 120 K and 300 K. 

The Equipartition Theorem
Earlier, we applied basic principles of mechanics to find that . If we 

multiply by a factor of N, the number of atoms in the ideal gas, the equation becomes:

.         (Eq. 14.19: Internal energy of a monatomic ideal gas)

Equation 14.19 gives the total energy associated with the motion of the atoms in the ideal 
gas. This is known as the internal energy. The equipartition theorem states that all contributions 
to the internal energy contribute equally. For a monatomic ideal gas there are three contributions, 
coming from motion in the x, y, and z directions. Each direction thus contributes  to the 
internal energy. Each motion contributing to internal energy is called a degree of freedom. Thus:

.   (Eq. 14.20)

Consider a diatomic ideal gas, in which each molecule consists of 
two atoms. At low temperatures, only translational kinetic energy is 
important, but at intermediate temperatures (the range we 
will generally be interested in) rotation becomes important. 
As shown in Figure 14.10, rotational kinetic energy is 
important for rotation about two axes but can be neglected 
for the third axis because the rotational inertia is negligible 
for rotation about that axis. With five degrees of freedom, 
each counting for , the internal energy of a 
diatomic ideal gas is:

. (Eq. 14.21: Internal energy of a diatomic ideal gas)

At high temperatures, energy associated with the vibration of the atoms becomes 
important and there are two additional degrees of freedom (one associated with kinetic energy, 
one with elastic potential energy) to bring the coefficient in front of the NkT to 7/2.

Polyatomic molecules, at intermediate temperatures, have six degrees of freedom, 
translational kinetic energy in three dimensions, and rotational kinetic energy about three axes.

.         (Eq. 14.22: Internal energy of a polyatomic ideal gas)

Related End-of-Chapter Exercises: 38, 47, 48, 53.

Essential Question 14.5: Two containers have identical volumes, temperatures, and the same 
number of moles of gas. One contains monatomic ideal gas while the other has diatomic ideal 
gas. Which container has a higher pressure? In which does the gas have more internal energy?
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(m/s) (m/s) (m/s)

Argon, T = 120 K 273 252 223
Argon, T = 300 K 432 398 353
Helium, T = 120 K 865 797 706
Helium, T = 300 K 1367 1260 1116

Figure 14.10: A diatomic molecule is modeled 
as two balls connected by a light rod. In 
addition to translating in three dimensions the 
molecule can rotate about axes 1 or 2, for a total 
of five degrees of freedom. There is no 
contribution to the internal energy from rotation 
about axis 3 because the molecule has 
negligible rotational inertia about that axis.


