
Answer to Essential Question 14.1: It is tempting to say that the pressure increases by a factor of 
3, but that is incorrect. Because the ideal gas law involves T, not , we must use temperatures 
in Kelvin rather than Celsius. In Kelvin, the temperature rises from 283K to 303K. Finding the 
ratio of the final pressure to the initial pressure shows that pressure increases by a factor of 1.07:

.

14-2 Kinetic Theory
We will now apply some principles of physics we learned earlier in the book to help us to 

come to a fundamental understanding of temperature. Consider a cubical box, measuring L on 
each side. The box contains N identical atoms of a monatomic ideal gas, each of mass m.

We will assume that all collisions are elastic. This applies to collisions of atoms with one 
another, and to collisions involving the atoms and the walls of the box. The collisions between 
the atoms and the walls of the box give rise to the pressure the walls of the box experience 
because the gas is enclosed within the box, so let’s focus on those collisions.

Let’s find the pressure associated with one atom because of its collisions with one wall 
of the box. As shown in Figure 14.3 we will focus on the right-hand wall of the box. Because the 
atom collides elastically, it has the same speed after hitting the wall that it had before hitting the 
wall. The direction of its velocity is different, however. The plane of the wall we’re interested in 
is perpendicular to the x-axis, so collisions with that wall reverse the ball’s x-component of 
velocity, while having no effect on the ball’s y or z components of velocity. This is like the 
situation of the hockey puck bouncing off the boards that we looked at in Chapter 6.

The collision with the wall changes the x-component of the ball’s 
velocity from to , so the ball’s change in velocity is  and its change 
in momentum is , where the negative sign tells us that the change in 
the atom’s momentum is in the negative x-direction.

In Chapter 6, we learned that the change in momentum is equal to the impulse (the 
product of the force and the time interval  over which the force is applied). Thus: 

.  (Equation 14.3: The force the wall exerts on an atom)

The atom feels an equal-magnitude force in the opposite direction (Newton’s third law): 

.  (Equation 14.4: The force the atom exerts on the wall)

What is this time interval, ? The atom exerts a force on the wall only during the small 
intervals it is in contact with the wall while it is changing direction. It spends most of the time not 
in contact with the wall, not exerting any force on it. We can find the time-averaged force the 
atom exerts on the wall by setting  equal to the time between collisions of the atom with that 
wall. Because the atom travels a distance L across the box in the x-direction at a speed of , it 

takes a time of  to travel from the right wall of the box to the left wall, and the same amount 
of time to come back again. Thus:
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Figure 14.3: An atom inside 
the box bouncing off the 
right-hand wall of the box.



.  (Equation 14.5: Time between collisions with the right wall)

Substituting this into the force equation, Equation 14.4, tells us that the magnitude of the 
average force this one atom exerts on the right-hand wall of the box is:

. (Eq. 14.6: Average force exerted by one atom)

To find the total force exerted on the wall we sum the contributions from all the atoms:

.  (Equation 14.7: Average force from all atoms)

The Greek letter (sigma) indicates a sum. Here the sum is over all the atoms in the box.

If we have N atoms in the box then we can write this as:

.   (Equation 14.8: Average force from all atoms)

The term in brackets represents the average of the square of the magnitude of the x-
component of the velocity of each atom. For a given atom if we apply the Pythagorean theorem in 
three dimensions we have . Doing this for all the atoms gives:

,

and there is no reason why the sum over the x-components would be any different from 
the sum over the y or z-components – there is no preferred direction in the box. We can thus say 

that  or, equivalently, .

Substituting this into the force equation, Equation 14.8, above gives:

.   (Equation 14.9: Average force on a wall)

The term in brackets represents the square of the rms average speed. Thus:

.   (Equation 14.10: Average force on a wall)

By multiplying by 2 and dividing by 2, we can transform Equation 14.10 to:

, (Eq. 14.11: Force connected to kinetic energy)

The term in brackets is a measure of the average kinetic energy, , of the atoms.

Related End-of-Chapter Exercise: 36.

Essential Question 14.2: Why is the rms average speed, and not the average velocity, involved in 
the equations above? What is the average velocity of the atoms of ideal gas in the box?
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