
Answer to Essential Question 12.3: In fact, this result is generally true. As long as the spring is 
ideal, then the time it takes a block to move through one complete oscillation is independent of 
the amplitude of the oscillation. The amplitude is defined as the maximum distance an object 
gets from its equilibrium position during its oscillatory motion.

12-4 The Connection with Circular Motion
So far we have looked at how to apply force and energy ideas to springs. Let’s now 

explore an interesting connection between what is called simple harmonic motion (oscillatory 
motion without any loss of mechanical energy), and uniform circular motion.

EXPLORATION 12.4 – Connecting circular motion to 
simple harmonic motion

Take the two spring-block systems we investigated at 
the end of the previous section and place them beside a large 
turntable that is rotating about a vertical axis. Set the constant 
angular speed of the turntable so that the turntable undergoes 
one complete revolution in the time it takes the blocks on the 
springs to move through one complete oscillation. As shown in 
Figure 12.8, there are two disks on the turntable, one a distance 
A from the center and the other a distance 2A from the center. 
The blocks are simultaneously released from rest at the instant 
the disks pass through the position shown in the figure.

Another amazing thing happens. As the disks spin at 
constant angular velocity and the blocks oscillate back and 
forth, the motion of block 1 matches the motion of disk 1, 
while the motion of block 2 matches the motion of disk 2. The 
position of the left-hand side of each block is at all times equal 
to the x-coordinate of the position of the center of its 
corresponding disk, taking the origin to be at the center of the 
turntable and using the x-y coordinate system shown in Figure 
12.8.

Step 1 – Sketch two separate motion diagrams, one showing the successive 
positions of disk 1 and the other showing the successive positions of disk 2, 
as the turntable undergoes one complete revolution. Plot the positions at 
regular time intervals which, because the disk rotates at a constant rate, 
correspond to regular angular displacements. Motion diagrams for the disks 
are shown in Figure 12.9, showing positions at 30° intervals.

Step 2 – Now add motion diagrams for the two blocks, sketching 
their positions so they agree with the statement above, that the 
left-hand side of each block is at all times equal to the x-
coordinate of the position of the center of its corresponding disk. 
These motion diagrams are shown in Figure 12.10.
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Figure 12.8: Comparing systems – two 
disks on a rotating turntable and two 
oscillating block-and-spring systems.

Figure 12.9: Motion diagrams for the 
two disks, showing their positions at 30˚ 
intervals. Because the turntable (and each 
disk) rotates at a constant rate, these 
equal angular displacements correspond 
to the equal time intervals we’re used to 
seeing on motion diagrams.



Step 3 – Measuring angles counterclockwise from the positive 
x-axis, write an equation giving the x-coordinate of disk 1 as a 
function of time. Hint: first write out the x-coordinate in terms 
of an arbitrary angle the turntable has rotated through, and 
then express that angle in terms of time and the turntable’s 
constant angular speed . Figure 12.11 shows the position of 
the disk 1 when the turntable has rotated through some arbitrary 
angle  from its initial position. Its x-position at this angle can 
be found from the adjacent side of the right-angled triangle: 

. Since the angular velocity is constant, however, and the 

initial angle we can express the angle as: 
. Substituting this into our expression for the 

disk’s x-position gives:  .

Step 4 – Based on the results above, what is the equation giving the 
x-position of block 1 (actually, the position of the left edge of block 1) 
as a function of time? What is the equation giving the position of 
block 2 as a function of time? Because the motion of block 1 
matches exactly the x-component of the motion of disk 1, the 
equation that gives the disk’s x-position must also gives the block’s 
x-position. Thus, for block 1 we have:

 . (Eq. 12.3: Position-versus-time for simple harmonic motion)

Using the convention introduced earlier in this book, in which a + or – sign is used to 
represent the direction of a vector in one dimension, the right-hand side of equation 12.3 can be 
viewed as a vector quantity, with the sign hidden in the cosine. We get a positive sign for some 
values of time and a negative sign for others. The equation for block 2 is virtually identical to that 
of block 1, with the only change being the extra factor of 2. For block 2: .

Key ideas: There is an interesting connection between simple harmonic motion and uniform 
circular motion. One-dimensional simple harmonic motion matches one component of a carefully 
chosen two-dimensional uniform circular motion. This allows us to write an equation of motion 
for an object experiencing simple harmonic motion: . In this context,  is known 
as the angular frequency.           Related End-of-Chapter Exercises: 42, 43.

Essential Question 12.4: We showed above how the position of a block oscillating on a spring 
matches one component of the position of an object experiencing uniform circular motion. Can 
we make similar conclusions about the velocity and acceleration of the block on the spring? 
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Figure 12.10: Motion diagrams for the two blocks, showing 
that the motion of a block experiencing simple harmonic 
motion exactly matches the motion of a well-chosen object 
experiencing uniform circular motion. The springs have 
been removed from the picture for clarity, and the motion 
diagrams for the blocks show the successive positions of the 
left-hand side of each block during its motion. The motion 
of a block matches the x-component of the motion of the 
corresponding disk on the turntable.

Figure 12.11: The position of block 1 
and disk 1 after the turntable has 
rotated through an arbitrary angle .


