
Answer to Essential Question 12.2: To answer this question, we can use the fact that the elastic 
potential energy is proportional to . Doubling x, the distance from equilibrium, increases the 
elastic potential energy by a factor of 4. Thus, the elastic potential energy is 6 J when x = 10 cm.

12-3 An Example Involving Springs and Energy

EXAMPLE 12.3 – A fast-moving block
(a) A block of mass m, which rests on a horizontal frictionless surface, is attached to an 

ideal horizontal spring. The block is released from rest when the spring is stretched by a distance 
A from its natural length. What is the block’s maximum speed during the ensuing oscillations?

(b) If the block is released from rest when the spring is stretched by 2A instead, how does 
the block’s maximum speed change?

SOLUTION
(a) Let’s begin, as usual, with a diagram of 

the situation (see Figure 12.6). When will the block 
achieve its maximum speed? Maximum speed 
corresponds to maximum kinetic energy, which 
corresponds to minimum potential energy. The 
gravitational potential energy is constant, since 
there is no up or down motion, so we can focus on 
the elastic potential energy. The elastic potential 
energy is a minimum (zero, in fact) when the block 
passes through equilibrium, where the spring is at its 
natural length. Energy bar graphs for the two points 
are shown in Figure 12.6.

Let’s continue with the energy analysis by writing out the conservation of energy 
equation:  . The initial point is the point from which the block is 

released, while the final point is the equilibrium position.
, because the block is released from rest from the initial point.
, because there is no work being done by non-conservative forces.

We can neglect gravitational potential energy, because there is no vertical motion. This 
gives , because the elastic potential energy is also zero at the final point.

We have thus reduced the energy equation to: . This gives:

.  Solving for the maximum speed gives: .

Is this answer reasonable? The maximum speed is larger if we start the block farther from 
equilibrium (where the spring exerts a larger force); if we increase the spring constant (also 
increasing the force); or if we decrease the mass (increasing acceleration). This all makes sense.

(b) If we start the block from 2A away from equilibrium, we simply replace A in our 
equation above by 2A, showing us that the maximum speed is twice as large:

.   
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Figure 12.6: Diagrams of the block at the 
release point and at the equilibrium position, 
and the corresponding energy bar graphs.

Related End-of-Chapter Exercises: 4, 5.



We can make an interesting generalization based 
on further analysis of the situation in  Example 12.3. 
Take two blocks, one red and one blue but otherwise 
identical, and two identical springs. Attach each block to 
one of the springs, and place these two block-spring 
systems on frictionless horizontal surfaces. As shown 
in Figure 12.7, we will release one block from rest 
from a distance A from equilibrium and the other from 
a distance 2A from equilibrium. If the blocks are 
released simultaneously, which block reaches the 
equilibrium point first?

Block 2 has an initial acceleration twice as 
large as that of block 1, because block 2 experiences a 
net force that is twice as large as that experienced by block 1. The accelerations steadily decrease, 
because the spring force decreases as the blocks get closer to equilibrium, but we can neglect this 
change if we choose a time interval that is sufficiently small.

At the end of this time interval, , what is the speed of each block? We’re choosing a 
small time interval so that we can apply a constant-acceleration analysis. Remembering that the 
blocks are released from rest, so , we have:

for block 1, ;
for block 2, .

What about the distance each block travels? Here we can apply another constant 
acceleration equation:

for block 1 ;

for block 2 .

At the end of the time interval, block 1 is  from equilibrium and block 2 is exactly 

twice as far from equilibrium as block 1, at  from equilibrium. Thus, after 
this small time interval has passed, block 2 is still twice as far from equilibrium as block 1, its 
velocity is twice as large, and its acceleration is twice as large. We could keep the process going, 
following the two blocks as time goes by, and we would find this always to be true, that block 2’s 
velocity, acceleration, and displacement from equilibrium, is always double that of block 1. This 
is true at all times, even after the blocks pass through their equilibrium positions to the far side of 
equilibrium.

This leads to an amazing conclusion – that the two blocks take exactly the same time to 
reach equilibrium (and to complete one full cycle of an oscillation). This is because block 2 
experiences twice the displacement of block 1, but its average velocity is also twice as large. 
Because the time is the distance divided by the average velocity, these factors of two cancel out.

Essential Question 12.3: Above we analyzed the situation of two identical (aside from color) 
blocks, oscillating on identical springs, and found the time to reach equilibrium (or to complete 
one full oscillation) to be the same. Was that just a coincidence that happened to work out 
because the starting displacements from equilibrium were in a 2:1 ratio, or can we generalize and 
say that the time is the same no matter where the block is released?
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Figure 12.7: Identical blocks attached to identical 
springs. The blocks are released from rest 
simultaneously. Block 2, at the top, is released from 
a distance 2A from equilibrium. Block 1 is released 
from a distance A from equilibrium. The initial free-
body diagrams are also shown.


