
Answer to Essential Question 12.1: This estimated time is less than the actual time. The closer 
the block gets to the equilibrium position, the smaller the force that is exerted on it by the spring, 
and the smaller the magnitude of the block’s acceleration. Because the block generally has a 
smaller acceleration than the acceleration we used in the constant-acceleration analysis, it will 
take longer to reach equilibrium than the time we calculated with the constant-acceleration 
analysis. Thus, remember not to use constant-acceleration equations in harmonic motion 
situations! We’ll learn how to calculate exact times in sections 12-4 to 12-6.

12-2 Springs and Energy Conservation
Now that we have seen how to incorporate springs into a force perspective, let’s go on to 

consider how to fit springs into what we know about energy.

EXPLORATION 12.2 – Another kind of potential energy

Step 1 – Attach a block to a spring, and position the block so that the spring is stretched. Let’s 
neglect friction, so when you release the block from rest it oscillates back and forth about the 
equilibrium position. What is going on with the energy of the system as the block oscillates?
As the block oscillates, its speed increases from zero to some maximum value, then decreases to 
zero again, and keeps doing this over and over. The kinetic energy of the system does exactly the 
same thing, since it is proportional to the square of this speed. Where does the energy go when 
the kinetic energy decreases, and where does it comes from when the kinetic energy increases?

The energy is stored as potential energy in the spring. This is similar to what happens 
when we throw a ball up into the air. As the ball rises, the ball’s loss of kinetic energy is offset by 
the gain in the gravitational potential energy of the Earth-ball system, and then that potential 
energy is transformed back into kinetic energy. Compressed or stretched springs also store 
potential energy. Such energy is known as elastic potential energy.

Step 2 - Consider the graph of force, as a function of the 
displacement of the end of the spring, shown in Figure 12.4. As 
we did in Chapter 6, defining the change in gravitational 
potential energy to be the negative of the work done by gravity 
on an object, find an expression for the change in elastic 
potential energy as the end of the spring is displaced from its 
equilibrium position (x = 0) to some arbitrary final position x. 
Make use of the fact that work is the area under the force-
versus-position graph in Figure 12.4.

The area in question is that of the right-angled 
triangle shown in Figure 12.4. The area is negative because 
the force is negative the entire time. The area under the 
curve is given by: 

. 

This area represents the work done by the spring. This work is negative because the 
spring force is opposite in direction to the displacement. Because , the change in the elastic 

potential energy, is the negative of the work, we have  in this case.

Chapter 12 – Simple Harmonic Motion  Page 12 - 4

Figure 12.4: The work done by a spring when 
its end is displaced from the equilibrium 
position to a point x away from equilibrium is 
represented by the shaded area in the graph.



Step 3 – How much elastic potential energy is stored in the spring when the spring is at its 
natural length? None. If we attach a block to such a spring and release the block from rest, no 
motion occurs because the system is at equilibrium. There is no transformation of elastic potential 
energy into kinetic energy because the system has no elastic potential energy when the spring is at 
its natural length – the equilibrium position is the zero for elastic potential energy.

Step 4 – Combine the results from parts 2 and 3 to determine the expression for the elastic 
potential energy stored in a spring when the end of the spring is displaced a distance x from its 
equilibrium position. In step 3 we found the change in elastic potential energy in displacing the 
end of the spring from its equilibrium position to a point x away from equilibrium to be 

. This change in elastic potential energy is equal to the final elastic potential energy 

minus the initial elastic potential energy. However, we found the initial elastic potential energy to 
be zero in step 3, which means the expression for elastic potential energy is simply:

 .   (Equation 12.2: Elastic potential energy)

Key ideas: Compressed or stretched springs store energy – this is known as elastic potential 

energy. For an ideal spring, the elastic potential energy is .                                  

Related End-of-Chapter Exercises: 9, 48.

Now that we know the form of the elastic potential energy equation, we can incorporate 
springs into the conservation of energy equation we first used in chapter 7: 

.  (Equation 7.1)

Graphs of the energies as a function of position are interesting. 
Consider a block attached to a spring. The block is oscillating back and 
forth on a frictionless surface, so the total mechanical energy stays 
constant. An easy way to graph the kinetic energy is to exploit energy 
conservation, . Solving for the kinetic energy as a function of 
position gives:

.

Graphs of the energies as a function of position are 
shown in Figure 12.5, for a situation in which the total 
mechanical energy is 4.0 J. After tracing out the complete 
energy curves over half an oscillation, the system re-traces 
these energy-versus-position plots as the block oscillates.

Essential Question 12.2: Consider a system consisting of a block attached to an ideal spring. The 
block is oscillating on a horizontal frictionless surface. When the block is 20 cm away from the 
equilibrium position, the elastic potential energy stored in the spring is 24 J. What is the elastic 
potential energy when the block is 10 cm away from equilibrium?

Chapter 12 – Simple Harmonic Motion  Page 12 - 5

Figure 12.5: Graphs of the system’s 
kinetic energy (zero at -A and A), elastic 
potential energy (zero at x = 0), and total 
mechanical energy (constant), as a function 
of position. The system traces over each of 
the energy graphs every half oscillation.


