
 12-1 Hooke’s Law
We probably all have some experience with springs. One observation we can make is that 

it doesn’t take much force to stretch or compress a spring a small amount, but the more we try to 
compress or stretch it, the more force we need. We’ll use a model of an ideal spring, in which the 
magnitude of the force associated with stretching or compressing the spring is proportional to the 
distance the spring is stretched or compressed.

The equation describing the proportionality of the spring force with the displacement of 
the end of the spring from its natural length is known as Hooke’s law.

.  (Equation 12.1: Hooke’s Law)

The negative sign is associated with the restoring nature 
of the force. When you displace the end of the spring in one 
direction from its equilibrium position, the spring applies a force 
in the opposite direction, essentially in an attempt to return the 
system toward the equilibrium position (the position where the 
spring is at its natural length, neither stretched nor compressed). 
The force applied by the spring is proportional to the distance the 
spring is stretched or compressed relative to its natural length.

The k in the Hooke’s law equation is known as the spring 
constant. This is a measure of the stiffness of the spring. If you have 
two different springs and you stretch them the same amount from 
equilibrium. The one that requires more force to maintain that stretch 
has the larger spring constant. Figure 12.1 shows the Hooke’s law 
relationship as a graph of force as a function of the amount of 
compression or stretch of a particular spring from its natural length.

The Hooke’s law relationship is illustrated in 
Figure 12.2, where x = 0 means the spring is neither 
stretched nor compressed from its natural length. A block 
attached to spring has been released and is oscillating on 
a frictionless surface. Free-body diagrams are shown in 
Figure 12.2, illustrating how the force exerted by the 
spring on the block depends on the displacement of the 
end of the spring from its equilibrium position.
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Figure 12.1: A graph of the force 
applied by a particular spring as a 
function of the displacement of the 
end of the spring from its 
equilibrium position.

Figure 12.2: A block attached to an ideal spring 
oscillates on a frictionless surface. By looking at the 
free-body diagrams of the block when the block is at 
various positions, we can see that the force applied 
by the spring on the block is proportional to the 
displacement of the end of the spring from its 
equilibrium position, and opposite in direction to that  
displacement.



EXAMPLE 12.1 – Initial acceleration of a block
A block of mass 300 g is attached to a horizontal spring that has a spring constant of 

6.0 N/m. The block is on a horizontal frictionless surface. You release the block from rest when 
the spring is stretched by 20 cm.

(a) Sketch a diagram of the situation, and a free-body diagram of the block immediately 
after you release the block.

(b) Determine the block’s initial acceleration.
(c) What happens to the block’s free-body diagram as the block moves to the left? 

SOLUTION
(a) The diagram and free-body 

diagram are shown in Figure 12.3. After 
you release the block, only three forces 
act on the block. The downward force of 
gravity is balanced by the upward normal 
force applied by the surface. The third 
force is the force applied by the spring. The 
spring force is directed to the left because the 
end of the spring has been displaced to the 
right from its equilibrium position.

(b) Here we can apply Newton’s Second Law horizontally, , taking right to be 

the positive x-direction. This gives: .

Now we can bring in Equation 12.1, , to get: .

Note that we use only one minus sign in the equation because we’re substituting for the 
magnitude of the spring force only. The one minus sign represents the direction of the spring 
force, which is to the left. Solving for the block’s initial acceleration gives:

.  

The initial acceleration is 4.0 N/kg to the left.

(c) As the block moves to the left, nothing changes about the vertical forces, but the 
spring force steadily decreases in magnitude because the stretch of the spring steadily decreases. 
Once the block goes past the equilibrium position, the spring force points to the right, and 
increases in magnitude as the compression increases. The dependence of the spring force on the 
block’s position is shown, for five different positions, in Figure 12.2.

Related End-of-Chapter Exercises: 16, 55.

Essential Question 12.1: Let’s say we estimated the time it takes the block in Example 12.1 to 
reach equilibrium, by assuming the block’s acceleration is constant at 4.0 N/kg to the left. Is our 
estimated time smaller than or larger than the time it actually takes the block to reach the 
equilibrium point?
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Figure 12.3: A diagram of the block and spring, and 
the free-body diagram of the block, immediately 
after the block is released from rest.


