
Answer to Essential Question 11.6: One way for Sarah to jump onto the merry-go-round, without 
causing the merry-go-round to spin, is for Sarah to direct her velocity at the center of the merry-
go-round, instead of tangent to it. If Sarah ran directly toward the center of the merry-go-round 
she would have no angular momentum before the collision and there would be no reason for the 
system to spin after the collision. 

11-7 Considering Conservation, and Rotational Kinetic Energy

In step 4 of Exploration 11.6, we stated that the angular momentum of the system 
consisting of Sarah and the merry-go-round was conserved, because no external torques were 
acting on the system. Let’s justify that statement. We do not have to concern ourselves with 
vertical forces, such as the force of gravity or the normal force applied to the merry-go-round by 
the ground, because vertical forces give no torque about a vertical axis of rotation. We also do not   
have to concern ourselves with the force that Sarah exerts on the merry-go-round, or the equal-
and-opposite force the merry-go-round exerts on Sarah, because the system we’re considering 
consists of the combination of Sarah and the merry-go-round, so those are internal forces and 
cancel one another. Still, let’s examine those forces a little.

 
Individual free-body diagrams for Sarah and the merry-go-round when Sarah first jumps 

on the merry-go-round are shown in Figure 11.17. Through some combination of friction between 
her shoes and the merry-go-round, and a contact force between her hands and any handholds on 
the merry-go-round, there is a force component that acts to the left on Sarah from the merry-go-
round (this reduces her speed), and an equal-and-opposite force component that acts to the right 
on the turntable by Sarah (providing the torque that gives the merry-go-round an angular 
acceleration). However, the turntable does not accelerate to the right. This is because there is a 
horizontal force applied on the turntable by whatever the turntable’s axis is connected to, which 
we can consider to be the Earth. As shown in Figure 11.17, the Sarah/merry-go-round system has 
a net external force acting on it at this point, which is why the linear momentum of the system is 
not conserved. However, this net external force gives rise to no torque about an axis through the 
center of the merry-go-round, because the force passes through that axis. Because there is no net 
external torque acting on the system, the system’s angular momentum is conserved.
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Figure 11.17: Free-body diagrams for Sarah, the merry-go-round, and the system 
consisting of Sarah and the merry-go-round together, when Sarah initially makes 
contact with the merry-go-round. Vertical forces are ignored in this overhead view.



Rotational Kinetic Energy
Let’s now move from the rotational equivalent of linear momentum to the rotational 

equivalent of translational kinetic energy. The equation we used previously for kinetic energy is K 
= ½ mv2. We can find the equivalent expression for kinetic energy in a rotational setting by 
replacing mass m by rotational inertia I, and speed v by angular speed . The kinetic energy of a 
purely rotating object is thus given by:

.   (Equation 11.3: Rotational kinetic energy)

Let’s make sure our substituting-the-equivalent-rotational-variables method of arriving at 
rotational equations makes sense. Consider, for instance, a uniform rod that can rotate about an 
axis through one end. If we hold the rod horizontal and then release it from rest, the rod swings 
down. What is the rod’s kinetic energy at a particular instant, say at the instant shown in Figure 
11.18 (a)? One thing we could do is, as shown in Figure 11.18 (b), break the rod into small pieces 

of mass , determine the speed  of each piece, find the kinetic energy of each piece, 

and then add up all these kinetic energies to find the total kinetic energy: 

. 

Because the speed of each piece is different, while the angular speed of each piece is the 
same, let’s write the sum in terms of the rod’s angular speed instead: 

.

 If we bring the constants of ½ and  out in front of the sum, our expression becomes 

, which we can write as  , because the definition of rotational inertia 

is . This expression for the kinetic energy agrees with what we came up with above 

(and it works for any rotating object, not just a rod!).

Essential Question 11.7: In Chapter 7 we used names such as “elastic collision” and “inelastic 
collision” to classify various collisions. Under what category would the Sarah/merry-go-round 
collision described in the previous Exploration fall?
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Figure 11.18: (a) A rod that has been released from rest when it was horizontal is 
now moving. We can find its kinetic energy by breaking the rod into small pieces, 
as shown in (b), finding the kinetic energy of each piece, and adding these kinetic 
energies together to find the net kinetic energy.


