
Answer to Essential Question 11.5: No friction force can act on the ball, so the correct free-body 
diagram is that shown in Figure 11.14 (c). A force of friction in the direction of motion would 
increase the ball’s translational speed, and the counterclockwise torque from the force of friction 
would decrease the ball’s angular speed. A force of static friction directed opposite to the ball’s 
velocity would decrease the translational speed while increasing the rotational speed. The ball 
rolls horizontally at constant velocity only if no friction force acts.

11-6 Angular Momentum
By now, we have looked at enough analogies between straight-line motion and rotational 

motion that we can simply take a straight-line motion equation, replace the straight-line motion 
variables by their rotational counterparts, and write down the equivalent rotational equation. We 
could also derive the rotational equations following a derivation parallel to the one we used for 
the straight-line motion equation, but the end result would be the same.

Let’s try this for angular momentum. In Chapter 6, we used the following expression for 
the linear momentum, , of an object of mass m moving with velocity : .

Using the symbol  to represent angular momentum, we can come up with the 
equivalent expression for angular momentum by replacing mass m by its rotational equivalent, 
rotational inertia I, and velocity  by its rotational equivalent :

                     . (Equation 11.1: Angular momentum)

We made a number of statements about momentum in Chapter 6. Equivalent statements 
apply to angular momentum, including:

• Angular momentum is a vector, pointing in the direction of angular velocity.
• The angular momentum of a system can be changed by applying a net torque. 
• If no net torque acts on a system, its angular momentum is conserved.

Let’s explore this idea of angular momentum conservation.

EXPLORATION 11.6 – Jumping on the merry-go-round
A little red-haired girl named Sarah, with mass m, runs toward a playground merry-go-

round, which is initially at rest, and jumps on at its edge. Sarah's velocity  is tangent to the 
circular merry-go-round. Sarah and the merry-go-round then spin together with a constant angular 
velocity . The merry-go-round has a mass M, a radius R, and has the form of a uniform solid 

disk. Assume that Sarah’s “radius” is small compared to R. The goal of this Exploration is to 
determine an expression for . We can treat this as a collision.

Step 1 – Sketch two diagrams, one showing Sarah running toward the merry-go-round and the 
other showing Sarah and the merry-go-round rotating together after Sarah has jumped on. 
Imagine that you’re looking down on the situation 
from above. These two diagrams are shown in 
Figure 11.15. 
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Figure 11.15: On the left is the situation before the 
collision, as Sarah runs toward the merry-go-
round, while on the right is the situation after the 
collision, with Sarah and the merry-go-round 
rotating together with a constant angular velocity.



Step 2 – What kind of momentum does the Sarah/merry-go-round system have, if any, before 
Sarah jumps on the merry-go-round? What about after Sarah jumps on?  After the collision, 
when the system is rotating, the system clearly has a non-zero angular momentum. Before the 
collision, however, it is not obvious that the system has any angular momentum, because nothing 
is rotating. Sarah certainly has a linear momentum, however, because she has a non-zero velocity.

Step 3 – Convert Sarah’s linear momentum before the collision to an angular momentum, 
using a method modeled on the way we convert a force to a torque. Although there is no rotation 
before the collision, we can say that the system has an angular momentum with respect to an axis 
perpendicular to the page that passes through the center of the merry-go-round. Consider how we 
get torque from force, where the magnitude of the torque is given by . Angular 
momentum is found from linear momentum in a similar fashion, with its magnitude given by:

,     (Eq. 11.2: Connecting angular momentum to linear momentum)
where  is the angle between the line we measure distance along and the 

line of the linear momentum.

Relative to the axis through the center of the merry-go-round, the angular 
momentum is: , in a counterclockwise direction.

Step 4 – Apply angular momentum conservation to express , the 

angular velocity of the system after the collision, in terms of the 
variables above. Angular momentum is conserved because there are 
no external torques acting on the Sarah/merry-go-round system, 
relative to a vertical axis passing through the center of the turntable. 
We will justify this further in section 11-7. Thus, we can say: Angular 
momentum before the collision = angular momentum afterwards.

The angular momentum afterwards is . The system’s rotational inertia after the 

collision is the sum of the rotational inertias of Sarah, and the ½ MR2 of the merry-go-round. 
Sarah’s “radius” is small compared to R, so we treat Sarah as a point, assuming that all her mass 
is the same distance, R , from the center of the turntable. Sarah’s rotational inertia is thus .

Thus, the rotational inertia of the system after the collision is .

Taking counterclockwise to be positive, angular momentum conservation gives: .

.

Solving for the final angular velocity of the system gives:

        or,  directed counterclockwise.

Key ideas: Linear momentum converts to angular momentum in the same way force converts to 
torque. Also, we apply momentum conservation ideas to rotational collisions in the same way we 
analyze collisions in one and two dimensions.    Related End-of-Chapter Exercises: 32, 34, 59.

Essential Question 11.6: Is it possible for Sarah, with the same initial speed, to jump onto the 
merry-go-round at the same point, but not make it spin? If so, how could she do this?
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Figure 11.16: The lever-arm method to 
determine Sarah’s angular momentum, 
with respect to an axis passing through 
the center of the merry-go-round.


