
Answer to Essential Question 10.1: Let’s re-arrange equation 10.1 to . Thus, an arc 
length that is equal to the radius corresponds to an angle of 1.0 radian, which is about 57°. If the 
arc length and the radius have units of meters, the units cancel on the right side of the equation 
and we have units of radians on the left side. This violates the general rule that units have to 
match on two sides of an equation. We have two ways around this. One way is to treat the radian 
as dimensionless. Another way is to define the radius as having units of meters/radian.

10-2 Connecting Rotational Motion to Linear Motion
The angular variables we defined in Section 10-1 are vectors, so they have a direction. In 

which direction is the angular velocity of the disk shown in Figure 10.2? If we all observe the 
disk from the same perspective we can say that the direction is counterclockwise. In practice, we 
will generally use clockwise or counterclockwise to specify direction. In actuality, however, the 
direction is given by the right-hand rule. When you curl the fingers on your right hand in the 
direction of motion and stick out your thumb, your thumb points in the direction of the angular 
velocity. This is straight up out of the page for the disk in Figure 10.2. 

EXPLORATION 10.2 – Connecting angular acceleration to acceleration
We can connect the magnitudes of the acceleration and angular 

acceleration in the same way that the distance traveled along an arc is connected to 
the angle ( ) and the speed is connected to the angular speed ( ). How?  
Imagine yourself a distance r from the center of a rotating turntable, moving with the 
turntable. If the turntable has a constant angular velocity, you have no angular 
acceleration, but you have a centripetal acceleration, , directed toward the 
center of the turntable. The angular acceleration, , cannot be connected to the 
centripetal acceleration by a factor of r, because  in this case.

You have a non-zero angular acceleration if the turntable (and you) speeds up 
or slows down. If the turntable speeds up, the acceleration has two components (see 
Figure 10.4(a)), a centripetal acceleration  toward the center, and a component 

tangent to the circular path, which is called the tangential acceleration . If 
the turntable slows down, then the tangential acceleration reverses direction 
(see Figure 10.4(b)), as does the angular acceleration (because the angular 
velocity is decreasing instead of increasing). Thus, the magnitude of the 
tangential acceleration is directly related to the magnitude of the angular 
acceleration:

     (Eq. 10.5: Connecting tangential and angular accelerations)

Key idea for angular acceleration: The angular acceleration  is directly related to the 
tangential acceleration  (the component of acceleration tangent to the circular path), and is not 

related to the centripetal acceleration .              Related End-of-Chapter Exercises: 44, 45.

Equations for motion with constant angular acceleration
In Chapter 2, we considered one-dimensional motion with constant acceleration, and used 

three main equations to analyze motion. The analogous equations for rotational motion are 
summarized in Table 10.1. Note the parallels between the two sets of equations.
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Figure 10.4: If you are rotating 
with a turntable as it speeds up 
(a) or slows down (b), your 
acceleration has two components, 
a centripetal component directed 
toward the center and a tangential 
component .



Table 10.1: Each kinematics equation has an analogous rotational-motion equation.

EXAMPLE 10.2 – Drawing a motion diagram for rotational motion
A turntable starts from rest, and has a counterclockwise angular acceleration of 

. Sketch a motion diagram for an object 1.0 m from the center that rotates with the 
turntable, plotting its position at 0.50 s intervals for the first 3.0 s. 

SOLUTION
Let’s use equation 10.7 to find the object’s angular position at 0.50-second intervals. The 

object starts at the position shown by the red circle in Figure 10.5 – the horizontal line will be the 
origin. Take counterclockwise to be positive, and then set up a table 
(see Table 10.2) summarizing what we know. This is similar to what 
we did for one-dimensional motion.

Using the values from Table 10.2, Equation 10.7 

simplifies to: .

Substituting different times into this equation gives the angular position of the object at 
the times of interest, as summarized in Table 10.3.
Time (s) 0 0.50 1.00 1.50 2.00 2.50 3.00
Angular position (radians) 0
Angular position (˚) 0 +7.5 +30 +67.5 +120 +187.5 +270

Table 10.3: The angular position of the object at 0.50-second intervals.

Using the information in Table 10.3, we can sketch a motion 
diagram for the object. The motion diagram is shown in Figure 10.6.

Essential Question 10.2: If we repeated Example 10.2, for an object 
at a radius of 0.5 m from the center of the turntable, what would 
change in Table 10.3? Assume the object has an angular position of 
zero at t = 0.
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Parameter Value
Positive direction Counterclockwise
Initial position
Initial angular velocity
Angular acceleration

Figure 10.5: The initial 
situation for the rotating object.

Table 10.2: Summarizing the initial 
information about the object.

Straight-line motion equation Analogous rotational motion equation
                      (Equation 2.9)                     (Equation 10.6)

        (Equation 2.11)        (Equation 10.7)

               (Equation 2.12)            (Equation 10.8)

Figure 10.6: A motion diagram for an object moving with an 
accelerating turntable, showing the position at 0.5-second intervals.


