Answer to Essential Question 9.7: The increase in pressure with depth is proportional to the
product of the density multiplied by the vertical distance. Because the density of the water is on
the order of 1000 times larger than that of air, we can neglect this effect for the air.

9-8 Fluid Dynamics

Let’s turn now from analyzing fluids at rest to analyzing fluids in motion. The study of
flowing fluids is known as fluid dynamics. Fluid dynamics can be rather complex, so we will
make some simplifying assumptions. These include:

1. The flow is steady — flow patterns are maintained without turbulence.
2. The fluid is incompressible — its density is constant.

3. The fluid is non-viscous — there is no resistance to the flow.

4. The flow is irrotational — there are no swirls or eddies.

Under these assumptions we get what is —\__/—

called streamline flow, indicated by the blue
o} o2

streamlines in the pipe shown in Figure 9.22. —/___\_

Figure 9.22: Streamline flow through a pipe.

Continuity

There are two main equations we will apply to analyze flowing fluids. The first of these is
called the continuity equation, which comes from the fact that when an incompressible fluid
flows through a tube of varying cross-section, the rate at which mass flows past any point in the
tube is constant. If the flow rate varied, fluid would build up at points where the flow rate is low.

The mass flow rate is the total mass flowing past a point in a given time interval divided

by that time interval. At a point where the flow is in the x-direction with a speed v and the tube
has a cross-sectional area A, the mass flow rate is given by:

mass ﬂowrate:A—:—:—:pAv.
At

Consider the streamline flow pattern in Figure 9.22. The mass flow rate is the same at
two different points, 1 and 2, in the tube, so:

PrAVI=pr 4V,

One of our assumptions is that the density is the same at all points, so we can reduce the
preceding equation to:

Av,=4,v,. (Equation 9.8: The Continuity Equation)

The main implication of the continuity equation is that the speed of the fluid increases as
the cross-sectional area of the tube decreases, and vice versa. The streamlines in Figure 9.22 show
the change in speed that corresponds to a change in area. Where the streamlines are farther apart,
such as at point 1, the flow speed is less. Where the streamlines are close together, such as at
point 2, the speed is higher.
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The second equation we will apply to flowing fluids is an energy conservation equation,
transformed to be particularly useful for fluids. Let’s start by writing out our energy conservation
equation from chapter 6:

U+K+W, =U,+K,.

The potential energy we’re talking about here is gravitational potential energy, in the
form U =m g y , and we can write the kinetic energy as K = (1/2)mv*. The energy equation can

thus be written as:

mgy, +%mvl2 +W,. =mgy, +%mv§ .

Let’s apply this equation to a fluid flowing through a pipe. Figure 9.23 shows the two
points we are considering, and two cylindrical regions of fluid are highlighted, one at each point.
The cylindrical regions have equal volumes.

In the case of a flowing fluid, the work done
by non-conservative forces is related to forces that
arise because of pressure differences. We can write A

the W,. term as: Ay ‘/_

W,e=F, Ax=F A —F, A, = R4, Ay = B4, Ax, - sl - N =
Substituting this expression for W, into the |<\_‘<_qu-\—
energy conservation relationship gives: '|\|‘
AX]
1, 1 5
mgy, "'Em"l + R A4Ax, =mgy, +Em"2 + B A Ay, Figure 9.23: The two cylindrical regions, one at

point 1 and one at point 2, have the same volume.

The m here represents the mass of the fluid in
one of the cylindrical regions in Figure 9.23 (the cylindrical regions have equal masses because of
their equal volumes).

Let’s simplify the equation by dividing both sides by the volume V of one of the
cylindrical regions (V' = 4, Ax, = A, Ax, ). Because mass/volume = density, we get:

pay +%pv12 +P=pgy, +%pv§ +P,. (Equation 9.9: Bernoulli’s Equation)

Bernoulli’s equation represents conservation of energy applied to fluids, although each
term has units of energy density (energy per unit volume).

Related End-of-Chapter Exercises: 31, 56.
Essential Question 9.8: Consider a special case of Bernoulli’s equation, when the fluid is at rest.

Which of the equations we have examined previously in this chapter is equivalent to Bernoulli’s
equation with the two terms involving speed set to zero?
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