
Answer to Essential Question 9.10: The new radius is 95% of the original radius. Taking a factor 
of 0.95 to the fourth power gives approximately 0.81, so the new flow rate would only be 81% of 
the original flow rate. The flow rate would not drop as much if the pressure difference between 
the ends of the blood vessel increased. This would generally be accomplished by increasing the 
blood pressure (which can lead to health issues, of course).

9-11 Drag and the Ultracentrifuge
When an object is falling through a viscous fluid, a drag force acts on it. Unlike the 

kinetic friction force we looked at earlier in the book, which has a magnitude that is independent 
of speed, the viscous drag force is generally proportional to the speed, and opposite in direction to 
the velocity. This is known as Stokes’ drag, with the drag force on a spherical particle of radius r 
moving at speed v through a fluid of viscosity η being:

Fd = −6πηrv.   (Equation 9.11: Stokes’ drag force for a spherical particle)

When an object falls through the fluid, it will reach a terminal velocity when the drag 
force plus the buoyant force is equal and opposite to the force of gravity. In general, the smaller 
the object, the smaller the magnitude of the terminal velocity. Very small objects fall very slowly. 
If your goal is to separate particles from the fluid the particles are in, this can be a problem - it 
can take a long time for the particles to settle out at the bottom.

This is where an ultracentrifuge comes in. The job of the ultracentrifuge is to spin the 
fluid very quickly in a circular path. In that case, the effect is just like increasing the value of g by 
a large factor. Effectively, as far as the particles are concerned, they are in a gravitational field 
with a strength given by the centripetal acceleration, ω2 r . Spinning very quickly gives very large 
values of the angular speed (ω), leading to very large “effective gravity” that separates out the 
particles quickly and efficiently. Let’s consider an example.

EXAMPLE 9.11 – Analyzing a blood sample
You get a blood sample drawn while you’re seeing your doctor, and the sample is sent to 

the lab for analysis. A key part of the analysis involves running the sample (contained in a 
cylindrical tube) through an ultracentrifuge to separate out the components, which have different 
densities (the red blood cells being most dense, at 1125 kg/m3, and the plasma being least dense, 
at 1025 kg/m3). The average density of blood is about 1060 kg/m3. What is the purpose of an 
ultracentrifuge, which, say, has a rotation rate of 5000 rpm and an acceleration 5000 times larger 
than the acceleration due to gravity? Why don’t they just stand the tube of blood up vertically to 
let gravity separate it? Do a quantitative analysis, using the following values. The mass of a red 
blood cell is about 27 ×10−15  kg , the viscosity of blood is about 3.5 ×10−3  Pa s , and we will 

model the cell as a sphere of radius 3.5 ×10−6  m .

SOLUTION
We’ll start by determining what gravity can do by itself. A red blood cell in a vertical tube 

of blood will reach a terminal velocity (vt) when the drag force plus the buoyant force is equal 
and opposite to the force of gravity.

 mg = ρ fluidVg + 6πηrvt .
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 We can replace the volume of the cell by V = m / ρcell , which gives

 mg =
ρ fluid

ρcell
mg + 6πηrvt .  

 This re-arranges to vt = 1−
ρ fluid

ρcell

⎛
⎝⎜

⎞
⎠⎟
mg
6πηr

, solving for the terminal speed of a blood cell.

 Now, we’ll substitute the relevant values into our equation (recognizing that our model 
has some limitations, such as that red blood cells are not spheres, and issues with the fluid density 
not being constant).

vt = 1−
ρ fluid

ρcell

⎛
⎝⎜

⎞
⎠⎟
mg

6πηr
= 1− 1060 kg/m3

1125 kg/m3

⎛
⎝⎜

⎞
⎠⎟

27 ×10−15  kg( ) 9.8 N/kg( )
6π 3.5 ×10−3  Pa s( ) 3.5 ×10−6  m( ) = 6.6 ×10−8  m/s.

This is very slow, of course. If we needed to wait until the red blood cell traveled a 
distance of 3.3 cm through the tube of blood, say, we would have to wait for 500000 s, which is 
approximately 6 days.

In our ultracentrifuge, where the acceleration is 5000 g, what is the difference? We use 
the same equation we derived above for the terminal speed, but we replace the factor of g by 
5000 g. That increases the terminal velocity by a factor of 5000, and reduces the time it takes the 
blood cell to travel 3.3 cm by a factor of 5000, so the time would be 100 s instead of 500000 s 
(about 2 minutes instead of 6 days). Despite the simplifying assumptions in our model, this is in 
keeping with the recommendations of ultracentrifuge manufacturers, that a spin time of five 
minutes at 5000 g is appropriate. Our analysis gives a value of the same order of magnitude. 

Where does the 5000 g come from? This goes back to uniform circular motion, in which 
the acceleration is given by:

ac =
v2

R
=ω 2R.

 R here is the radius of the circular path traveled by a blood cell inside the centrifuge (not 
to be confused with the r used above, for the radius of the blood cell itself). Expressing the 
angular speed in rad/s, and the acceleration in meters per second, we could solve for R, for 
instance. 

Related End-of-Chapter Exercises: 67 - 71.

Essential Question 9.11: A manufacturer has two different centrifuges, one that spins at 
5000 rpm, and another that spins at 10000 rpm. Everything else is the same. The manufacturer 
makes the following claim about the faster centrifuge - “It costs three times as much, but it is also 
three times as efficient - you can run samples through the faster centrifuge in one third the time!”
Based on our analysis above, the factor of three seems somewhat surprising - what would we 
expect the difference to be between the two models? Accounting for the fact that it takes some 
time for the centrifuge to reach its maximum angular speed, and to slow down to a stop at the end 
of a run, might this factor of three actually be plausible?
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