
 Answer to Essential Question 2.5: The position-versus-time graph is not a straight line, because 
the slope of such a graph is the velocity. The fact that the bus’ velocity increases linearly with 
time means the slope of the position-versus-time graph also increases linearly with time. This 
actually describes a parabola, which we will investigate further in the next section.

2-6 Equations for Motion with Constant Acceleration
In many situations, we will analyze motion using a model in which we assume the 

acceleration to be constant. Let’s derive some equations that we can apply in such situations. In 
general, at some initial time , the object has an initial position and an initial velocity of 

, while at some (usually later) time t, the object’s position is  and its velocity is .

Acceleration is related to velocity the same way velocity is related to position, so we can 
follow a procedure similar to that at the end of Section 2-3 to derive an equation for velocity.

Substitute  for in the rearrangement of Equation 2.8, .

This gives:  .

Generally, we define the initial time to be zero:  .

Remove the “f” subscripts to make the equation as general as possible: . We 
also generally remove the vector symbols, although we must be careful to include signs.

. (Equation 2.9: Velocity for constant-acceleration motion)

A second equation comes from the definition of average velocity (Equation 2.2):

Average velocity = .

If the acceleration is constant the average velocity is simply the average of the initial and 
final velocities. This gives, after again dropping the vector symbols:

.        (Equation 2.10: Connecting average velocity and displacement)

Equation 2.10 is sometimes awkward to work with. If we substitute  in for  (see 
Equation 2.9) in Equation 2.10, re-arranging produces an equation describing a parabola:

.      (Equation 2.11: Position for constant-acceleration motion)

 We can derive another useful equation by combining equations 2.9 and 2.10 in a different 

way. Solving equation 2.9 for time, to get , and substituting the right-hand side of that 

expression in for t in equation 2.10, gives, after some re-arrangement:
.        (Eq. 2.12: Connecting velocity, acceleration, and displacement)
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 Motion with constant acceleration is an important concept. Let’s summarize a general, 
systematic approach we can apply to situations involving motion with constant acceleration.

A General Method for Solving a One-Dimensional Constant-Acceleration Problem
1. Picture the scene. Draw a diagram of the situation. Choose an origin to measure 

positions from, and a positive direction, and show these on the diagram.
2. Organize what you know, and what you’re looking for. Making a table of data 

can be helpful. Record values of the variables used in the equations below.
3. Solve the problem. Think about which of the constant-acceleration equations to 

apply, and then set up and solve the problem. The three main equations are:

.   (Equation 2.9: Velocity for constant-acceleration motion)

.  (Equation 2.11: Position for constant-acceleration motion)

.          (Equation 2.12: Connecting velocity, acceleration, and displacement)

4. Think about the answer(s). Check your answers to see if they make sense. 

EXAMPLE 2.6 – Working with variables
In physics, being able to work with variables as well as numbers is an important skill. 

This can also produce insights that working with numbers does not. Let’s say an object is 
dropped from rest from the top of a building of height H, while another object is dropped from 
rest from the top of a building of height 4H. Assuming both objects fall under the influence of 
gravity alone (that is, they have the same acceleration), compare the times it takes them to reach 
the ground.

SOLUTION
, because the objects are dropped from rest. Take the initial position to be the top of the 

building in each case, so . This reduces Equation 2.11 to . Because the 
acceleration is the same in each case, the equation tells us the position is proportional to the 
square of the time. To quadruple the final position, as we are doing, we need to increase the time 
by a factor of two. The fall from the building that is four times as high takes twice as long. This 
is illustrated by the motion diagram in Figure 2.18.

Related End-of-Chapter Exercises: 52 and 55

Essential Question 2.6: Return to the situation described in Example 2.6. Compare the velocities 
of the objects just before they hit the ground.
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An important note about positive and negative signs.
When we make use of the equations on the previous page, we must be careful to include 

the appropriate positive or negative signs that are built into each of the variables. The first step 
is to choose a positive direction. If the initial velocity is in that direction, it goes into the 
equations with a positive sign. If the initial velocity is in the opposite direction (the negative 
direction), it goes into the equations with a negative sign. Apply a similar rule for the final 
velocity, the acceleration, the displacement, the initial position, and the final position. For all of 
those quantities, the sign is associated with the direction of the corresponding vector.

Figure 2.18: Falling from rest for double 
the time quadruples the distance traveled. 
The height of the diagram is 4H, four 
times the height of the smaller building in 
Example 2.6.


