Converting Text to PNG images
Close this window.

Below are some example of how you can convert text expressions into an image to use within an assignment. Quotes are shown only to emphasize the spacing required for pre-subscripts and pre-superscripts. They are not required to be entered in the expression field.

  Fractions
Fraction 'x/y' x/y
Bevelled fraction '1\/2' 1\/2


  Subscripts and Superscripts
Superscript 'x^2' or 'x**2' x^2
Subscript 'x_2' x_2
Pre-Superscript ' ^2x'  ^2x
Uranium isotope ' ^235U'  ^235U
Pre-Subscript ' _2x'  _2x
Pre-Super/Subscript ' _x^2B'  _x^2B
† It is not yet possible to have a prescript followed by both a superscript and subscript.

  Operators and mathematical symbols
Infinity 'infinity' infinity
Middot 'x middot y' x middot y
Cross 'x cross y' x cross y
Proportional To 'x propto y' or 'x proportional y' x propto y
Approximately Equal 'x ~= y' x ~= y
Not Approximately Equal 'x !~= y' x !~= y
Union 'x union y' x union y
Intersect 'x intersect y' x intersect y
Perpendicular 'x perp y' x perp y
Less than or equal to '<=' <=
Greater than or equal to '>=' >=
Not equal to '!=' !=
Plus or minus '+/-' +/-
Square root 'sqrt(x)' sqrt(x)
N root 'root3(x)', 'root4(x)', ... 'rootn(x)' rootn(x)
Absolute value 'abs(x)' abs(x)
Limit 'lim_(x->0)' lim_(x->0)
Integral 'int_0^x' int_0^x
Closed Integral 'cintegral' cintegral_0^x
Summation 'sum_(i=0)^x' sum_(i=0)^x
Under/Over 'sum__(i=0)^^infinity' sum__(i=0)^^infinity
Product 'prod_(i=0)^x' prod_(i=0)^x
Differentiation '(difff(x))/(diffx)' (difff(x))/(diffx)
Partial derivative '(partial^2u)/(partialx^2)' (partial^2u)/(partialx^2)
Trig 'cos(x)', 'arctan(y)', etc. cos(x), arctan(y)
† Hyperbolic functions do not seem to be supported by LaTeX.

  Greek characters and text
Text 'text(a string of text)' text(a string of text)
Greek 'alpha', 'beta', 'delta', 'pi', etc... alpha, beta, delta, pi
Capital greek 'Omega', 'Theta', 'Lambda', etc... Omega, Theta, Lambda


  Matricies and Formulas
Formula 'f(x)={(2x+1 text(if) x <= -1,3x text(if) -1 < x < 1,6x-1 text(if) x >= 1)' f(x)={(2x+1 text(if) x <= -1,3x 
      text(if) -1 < x < 1,6x-1 text(if) x >= 1)
Quadratic formula 'x=(-b+/-sqrt(b^2-4ac))/(2a)' x=(-b+/-sqrt(b^2-4ac))/(2a)
Matrix 'matrix(2,3,[x,y,z,a,b,c])' matrix(2,3,[x,y,z,a,b,c])
Matrix 'matrix(4,4,[a_(11),a_(12),...,a_(1n),a_(21),a_(22),...,a_(2n), _...,_...,\...,_...,a_(m1),a_(m2),...,a_(mn)])' matrix(4,4,[a_(11),a_(12),...,a_(1n),a_(21),a_(22),...,a_(2n), 
      _...,_...,\...,_...,a_(m1),a_(m2),...,a_(mn)])


  Other useful symbols
Degree '36 deg' 36 deg
Under '(H_2O)__-->' (H_2O)__-->
Over '(H_2O)^^-->' (H_2O)^^-->
Hat 'x^^\\^' x^^\^
Vector 'x^^\\->' x^^\->
Accent 'x^^\\'' x^^\'
Tilde 'x^^\\~' x^^\~
Grave 'x^^\\`' x^^\`
ell 'ell' ell
hbar 'hbar' hbar
Overbar 'x^^\\_' x^^\_
Overbrace '(x+y+z)^^\\}' (x+y+z)^^\}
Underline 'x__\\__' x__\__
Underbrace '(x+y+z)__\\_}' (x+y+z)__\_}
Left angle 'langle' langle
Right angle 'rangle' rangle
Right arrow '->' ->
Long right arrow '-->' -->
Left arrow '<-' <-
Long left arrow '<--' <--
Left/Right arrow '<->' <->
Right harpoon '~>' ~>
Left harpoon '<~' <~
Left/Right harpoon '<~>' <~>
Double right arrow '==>' ==>
Double left arrow '<==' <==
Double left/right arrow '<=>' <=>
Ellipsis '...' ...
Vertical ellipsis '_...' _...
Diagonal ellipsis '\...' \...
Bold '<b>x</b> + y' <b>x</b> + y
Close this window.