Appendix B: Percent Error and Percent Difference

When reporting your experimental result, you will compare it to either an accepted value or an experimental value measured using a different procedure to check for consistency.

Comparing an experimental value to a theoretical value

Percent error is used when comparing an experimental result E with a theoretical value T that is accepted as the "correct" value.

$$
\text { percent error }=\frac{|T-E|}{T} \times 100 \%
$$

For example, if you are comparing your measured value of $10.2 \mathrm{~m} / \mathrm{s}^{2}$ with the accepted value of 9.8 $\mathrm{m} / \mathrm{s}^{2}$ for the acceleration due to gravity g, the percent error would be

$$
\text { percent error }=\frac{|9.81-10.2|}{9.81} \times 100 \%=4 \%
$$

Note that percent error should be reported to just one significant figure.
Often, fractional or relative uncertainty is used to quantitatively express the precision of a measurement.

$$
\text { percent uncertainty }=\frac{\text { uncertainty }}{E} \times 100 \%
$$

The percent uncertainty in this case would be

$$
\text { percent uncertainty }=\frac{0.04}{10.2} \times 100 \%=0.39 \%
$$

Comparing two experimental values

Percent difference is used when comparing two experimental results E_{1} and E_{2} that were obtained using two different methods.

$$
\text { percent difference }=\frac{\left|E_{1}-E_{2}\right|}{\frac{E_{1}+E_{2}}{2}} \times 100 \%
$$

Suppose you obtained a value of $9.95 \mathrm{~m} / \mathrm{s}^{2}$ for g from a second experiment. To compare this with the result of $10.2 \mathrm{~m} / \mathrm{s}^{2}$ from the first experiment, you would calculate the percent difference to be

$$
\text { percent difference }=\frac{|9.95-10.2|}{\frac{9.95+10.2}{2}} \times 100 \%=2.5 \%
$$

