WebAssign is not supported for this browser version. Some features or content might not work. System requirements

WebAssign

Welcome, demo@demo

(sign out)

Monday, March 31, 2025 22:42 EDT

Home My Assignments Grades Communication Calendar My eBooks

Reichart, Astronomy with Skynet 1/e (Homework)

James Finch

Astronomy, section 1, Fall 2019

Instructor: Dr. Friendly

Current Score : 1 / 133

Due : Monday, January 28, 2030 00:00 EST

Last Saved : n/a Saving...  ()

Question
Points
1
1/133
Total
1/133 (0.8%)
  • Instructions

    In Astronomy with Skynet: Our Place In Space! students learn how to use robotic telescopes to observe planets, moons, asteroids, binary and variable stars, supernovae, star-forming regions, star clusters, and galaxies. Skynet is a network of robotic telescopes across the world that can be controlled over the Internet, serving professional astronomers, students, and the general public. The WebAssign content for these labs includes a complete lab manual with instructions and corresponding questions for completing the lab assignment. Most of the labs require access to Skynet and Afterglow, resources provided by Dan Reichart at the University of North Carolina-Chapel Hill.

    This sample is a multi-part lab question with the following features:
    Ability to display lab one section at a time
    File upload parts
    Essay parts
    Personalized student grading. Students enter their own data and grading for subsequent calculations are based on this initial data. Calculations that are done correctly, but are based on bad data are specifically pointed out to students.
    Answer boxes that depend on earlier values are grayed out, preventing entry until values on which it depends are entered.
    Some questions depend on values that students enter earlier in the lab.

    View the complete list of WebAssign questions available for this textbook.

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. 1/133 points  |  Previous Answers UNCAstro101L1 3.IL.001. My Notes
Question Part
Points
Submissions Used
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/1 /1 /1 /1 /1 /1 0/1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 1/1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1
0/5 0/5 0/5 0/5 0/5 0/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Total
1/133
 
LAB 3 THE GALILEAN REVOLUTION: EARTH'S PLACE IN THE SOLAR SYSTEM
  • GOALS

    In this lab, you will learn how to:
    1. Measure a moon's orbit around a planet.
    2. Use this information to measure the mass of the planet.
    3. Measure the phase and angular diameter of Venus.
    4. Use this information to distinguish between the geocentric and heliocentric models of the universe.
  • EQUIPMENT

    Computer with Internet connection
  • BACKGROUND: A. THE GALILEAN REVOLUTION

    Galileo did not invent the telescope, but he was the first to point it to the heavens. Beginning in 1609, this led to four revolutionary discoveries.

    1. He discovered craters and mountains on the moon.

    1. He discovered spots on the sun.

    Both of these were revolutionary in that the Catholic Church had long ago adopted the Aristotelian idea that the moon and sun were "perfect" objectsspherical, perfectly smooth, and in the case of the sun, unblemished.

    1. He discovered four moons orbiting Jupiter.

    This was revolutionary in that it contradicted the geocentric model of the universethe idea that Earth is at the center of the universe and everything orbits it. The geocentric model had also been long ago adopted as truth by the Catholic Church.

    1. He discovered the phases of Venus.

    Although lesser known than the discovery of Jupiter's moons, the discovery of Venus's phases is more significant, in that it not only contradicted the geocentric model of the universe, it confirmed a prediction of the heliocentric model of the universethe idea that the sun, not Earth, is at the center.

    In Aristotle's (and later Ptolemy's) geocentric model of the universe, Venus rides on a circle called an epicycle and the center of Venus's epicycle rides on a circle called a deferent around Earth.

    The center of Venus's epicycle is always on a line between Earth and the sun. Consequently, Venus never wanders too far from the sun in the sky, which is what is observed.

    The geocentric model of the universe makes specific predictions about Venus's phases: (1) Venus's phase is new or very close to new when it is closest to Earth and consequently appears largest; (2) it transitions to crescent as it recedes from Earth and consequently appears smaller; (3) it transitions to new or very close to new again when it is farthest from Earth and consequently appears smallest; (4) it transitions to crescent again when it is approaching Earth and consequently appears larger; and (5) it transitions to new or very close to new again when it is closest to Earth and consequently appears largest.

    These phase and angular diameter transitions correspond to a curve in the following plot. The curve is thick because different versions of the geocentric model make slightly different predictions.

    In the heliocentric model of the universe, Venus's orbit is interior to Earth's. Consequently, as in the geocentric model, Venus never wanders too far from the sun in the sky.

    However, the heliocentric model of the universe makes very different predictions about Venus's phases: (1) Venus's phase is new or very close to new when it is closest to Earth and consequently appears largest; (2) it transitions to crescent and then quarter and then gibbous as it recedes from Earth and consequently appears smaller; (3) it transitions to full or very close to full when it is farthest from Earth and consequently appears smallest; (4) it transitions to gibbous and then quarter and then crescent again when it is approaching Earth and consequently appears larger; and (5) it transitions to new or very close to new again when it is closest to Earth and consequently appears largest.

    These phase and angular diameter transitions correspond to the red curve in the following plot. Clearly, the predictions of the heliocentric model differ from those of the geocentric model.

    Here's a video of Venus in the geocentric model of the universe. It plays fast. Play it enough times to see all of the phase and angular diameter transitions.

    Here's a video of Venus in the heliocentric model of the universe. Again, play it enough times to see all of the phase and angular diameter transitions.

    In Section C of the procedure, you will measure Venus's phase and angular diameter at different times and then use this information to distinguish between the geocentric and heliocentric models of the universe.
  • BACKGROUND: B. ORBITS

    Kepler showed that planets orbiting the sun and moons orbiting planets do not travel on circles, but on ellipses, with the central body at one of the two foci.

    The long axis of an ellipse is called the major axis. Half of the major axis is called the semi-major axis, which is usually denoted a.

    Kepler also showed that the time that it takes for a planet to orbit the sun or for a moon to orbit a planetthe orbital period, which is usually denoted Pis related to the semi-major axis in the following way.
    P2 = constant × a3,
    where the value of the constant depends on the central body: All planets orbiting the sun have the same constant. All moons orbiting Jupiter share a different constant. The moon orbiting Earth has yet another constant.

    Newton showed that the value of the constant depends on the mass of the central body.
    P2 =
    4π2
    GM
    × a3
    (This assumes that the mass of the central body is significantly greater than the mass of the orbiting body.)

    Now, consider the case of Earth orbiting the sun. Then P = 1 year, M = 1 solar mass, and a = 1 AU (astronomical unit = 1 sun-Earth distance). Hence:
    (1 year)2 =
    4π2
    G 1 solar mass
    × (1 AU)3.
    Dividing this equation into the previous equation yields:
    P
    1 year
    2
     
     =
    1 solar mass
    M
    × 
    a
    1 AU
    3
     
    .

    Solving for the mass of the central body yields:
    M =
    (a/1 AU)3
    (P/1 year)2
     solar masses.
    Hence, by measuring the semi-major axis of a moon's orbit around a planet in AU and its orbital period in years, you can measure the mass of the planet in solar masses. In Sections A and B of the procedure, you will measure the orbit of a moon around one of the four Jovian planets and then use this information to measure the mass of that planet.
  • PROCEDURE: A. MONITOR A PLANETARY SYSTEM WITH SKYNET - 1. How to Monitor a Planetary System with Skynet

    In this tutorial, you will learn how to monitor an object over an extended period of time.

    Use Skynet to monitor an observable Jovian planetary system every clear night for two weeks. Select Jupiter, Saturn, Uranus, or Neptune.

    Remember to confirm that the planetary system that you selected is indeed observable from CTIO or SSO this time of year.

    If it is not, select a different planetary system.

    Select as many of PROMPT-1, 3, 4, 5, and 6 and PROMPT-SSO-1, 2, 3, and 4 as you can, but do not select PROMPT-2, 7, or 8.

    Select filters and request exposure durations that will allow you to detect as many moons as possible without overly saturating the planet.

    System Filter Exposure Duration (seconds)
    Jupiter V 0.03
    Saturn HiThru 0.03
    Uranus HiThru 1
    Neptune HiThru 1

    Request two exposures (just in case one disappoints) and below this select "Show Advanced Time Settings".
    Under the advanced time settings, request "Repeat this observation every 1 day a total of 14 times" and select "If interrupted continue on next free telescope".
  • PROCEDURE: A. MONITOR A PLANETARY SYSTEM WITH SKYNET - 2. Make a Movie of the Moons Orbiting the Planet

    In this tutorial, you will learn how to select and align images, which must be done before they can be made into a movie.

    Select and align your images. Remember:
    1. If the planet is in the same general area in each of your images, feel free to change "Cropping Method" to "Intersection". Otherwise, use "Union".
    2. Since you will align by clicking on the planet, change "Stellar Method (PSF)" to "Planetary Method (Disk)".
    3. Select, or create and select, a target directory in your "Workspace", where your selected and aligned images can be saved.
    4. For each image, either select and align it by clicking on the planet or reject it by clicking the "Reject" button.

    In this tutorial, you will learn how to turn selected and aligned images into a movie.

    Turn your selected and aligned images into a movie. Remember:
    1. If you want to see the moons orbit the planet, stop the movie. Select "ZScale" in the "Histogram" window and "Equalize Histogram" in the "Make Movie" window. Then play.
    2. If you want to see the planet rotate, stop the movie. Select "MinMax" in the "Histogram" window and "Equalize Histogram" in the "Make Movie" window. (This is more impressive for Jupiter than it is for Saturn, Uranus, and Neptune).
    Repeat #1 so the moons can be seen orbiting the planet. In the "Make Movie" window, select either the "avi" or "mov" file format and save your movie by clicking "Download Movie". Check your saved movie by playing it with other software on your computer.

    Question: Upload your final avi or mov movie. (Submit a file with a maximum size of 8 MB. 5 points.)

    This answer has not been graded yet.

  • PROCEDURE: B. ORBIT AND MASS DETERMINATION - 1. Measure the Angular and Physical Diameters of the Planet

    Question: Which planet did you observe in Section A of the procedure? (1 point)
        

    Identify the sharpest looking image of your images. Open it in Afterglow, select the "Histogram" window, and select "MinMax". Zoom in until the planet fills your window.

    Question: Measure the angular diameter (θ) of the planet to the nearest 0.1 arcseconds. If your planet is Saturn, measure the angular diameter of its rings. (2 points)
    arcseconds

    Note: This value should be larger than the true value due to atmospheric blurring and possibly due to difficulty knowing which shade of gray best marks the edge of the planet.

    Question: Use Stellarium to find the distance to the planet when Skynet took your image, in AU. (2 points)
    AU

    Note: In Lab 4, you will learn how to measure distances to solar system objects directly using parallax, instead of having to look them up in Stellarium. But this will do for now.

    Once the angular diameter of the planet and the distance to the planet are known, the physical diameter of the planet can be determined.

    The physical diameter of the planet as a fraction of the circumference of the big circle is the same as the angular diameter of the planet as a fraction of 360°:
    diameter
    circumference
     = 
    θ
    360°
    Since circumference = 2π × radius and the radius of the big circle is the distance to the planet:
    diameter
    2π × distance
     = 
    θ
    360°
    Solving for the physical diameter of the planet yields:
    diameter = 2π × distance × 
    θ
    360°

    Question: Use this equation to calculate the physical diameter of your planet in AU. You will need to convert θ to degrees first. (3 points)
    AU

    Show your work for both of these calculations.

    This answer has not been graded yet.



    Note: Since in AU, this should be a very small number.

    Note: This value should be larger than the true value by the same factor that your measurement of the planet's angular diameter (θ) is larger than its true value. These factors will cancel out in Section B.4 of the procedure and consequently will not affect your measurement of the planet's mass.
  • PROCEDURE: B. ORBIT AND MASS DETERMINATION - 2. Measure the Orbit of a Moon

    Next you are going to measure the orbit of one of your planet's moons:
    • If your planet is Jupiter, you will measure the orbit of Ganymede.
    • If your planet is Saturn, you will measure the orbit of Titan.
    • If your planet is Uranus, you will measure the orbit of Oberon.
    • If your planet is Neptune, you will measure the orbit of Triton.

    For each of your successful observations:
    1. Select the better of the two images.
    2. For that image, select the information window and record the system (not universal) date and time that the image was taken in Data Table 1 below. Also record the Julian date that the image was taken in Data Table 1, to the nearest 0.1 days.
    3. Adjust the max value and zoom in/out until you can easily see the moons. Use Stellarium to identify which one is Ganymede, Titan, Oberon, or Triton. (If the moon is too close to the planet to see, or so far from the planet that it is off the image, skip this observation.)
    4. Measure the angular separation between the center of the planet and the center of the moon. Record it to the nearest 0.1 arcseconds in Data Table 1 below.

    Question: Which moon did you measure? (1 point)
         Incorrect: Your answer is incorrect.

    Data Table 1: Planetary Moons (10 points)
    Note: Angular separations must be measured in arcseconds, not arcminutes.
    System Date System Time Julian Date
    (days)
    Angular
    Separation
    (arcseconds)

    Sign your name to attest to the fact that you collected these data yourself:

    This answer has not been graded yet.

  • PROCEDURE: B. ORBIT AND MASS DETERMINATION - 3. Measure the Mass of the Planet

    Go to this website and select "Moon". In this tutorial, you will learn how to graph your data and measure an orbit's semi-major axis in arcseconds and period in days.

    Make a graph of angular separation vs. Julian date and adjust the semi-major axis (a), the orbital period (P), and the phase and tilt of the orbit until the curve best matches your data.

    Note: Google the orbital period of your moon to check your result. If you are way off, try again.

    Note: Jupiter, Saturn, and currently Uranus have small orbital tilts, meaning that you are viewing them close to edge on. Neptune currently has a large orbital tilt, meaning that you are viewing it close to face on. If you are way off, try again.

    Save your graph as a png file.

    Question: Upload your png graph. (10 points)

    This answer has not been graded yet.



    The orbit's semi-major axis and period are reflected in the fitted curve as follows.

    The maximum angular separation between the moon and the planet is the semi-major axis of the moon's orbit.

    Question: Record the semi-major axis, a, in arcseconds. (2 points)
    arcseconds

    The time between peaks is the time it takes for the moon to move from one side of the planet to the other. This is half of the moon's orbital period. The time between two peaks is the moon's orbital period.

    Question: Record the orbital period, P, in days. (2 points)
    days

    Next, use your measurement of the planet's angular diameter in arcseconds and your calculation of the planet's physical diameter in AU from Section B.1 of the procedure to convert your measurement of the moon's orbital semi-major axis from arcseconds to AU.
    a in AU = (a in arcseconds) × 
    diameter in AU
    θ in arcseconds

    Question: Calculate a in AU. (2 points)
    AU

    Show your work.

    Score: 1 out of 1

    Comment:



    Note: Since in AU, this should be a very small number.

    Question: Convert your measurement of the moon's orbital period from days to years. (2 points)
    years

    Show your work.

    This answer has not been graded yet.



    Note: Since in years, this should be a very small number.

    By Newton's form of Kepler's third law, the mass of the planet must then be:
    M
    (a/1 AU)3
    (P/1 year)2
     solar masses

    Question: Calculate the mass of the planet. (2 points)
    solar masses

    Show your work.

    This answer has not been graded yet.



    Question: Finally, convert the planet's mass to Earth masses: 1 solar mass = 333,000 Earth masses. (2 points)
    Earth masses

    Show your work.

    This answer has not been graded yet.



    Question: Google the true mass of your planet in Earth masses and compute your percent error. (3 points)
    %

    Question: Discuss significant sources of error. (3 points)

    This answer has not been graded yet.

  • PROCEDURE: C. VENUSIAN PHASES

    Venus's angular diameter and illuminated angular distance are defined as follows.

    Use Afterglow to measure the angular diameter and illuminated angular distance of Venus (1) in your image from Lab 1, if you got one of Venus, and (2) in archival images (in Afterglow, go to "File", "Open Image(s)", "Sample Images", "Astro 101 lab", "Lab 3 - Galilean Revolution", "Venus"). Record these to the nearest 0.1 arcseconds in Data Table 2 below.

    Note: For each image, select the "Histogram" window and select "MinMax". Zoom in until Venus fills your window!

    Venus's phase is given by:
    phase =
    illuminated angular distance
    angular diameter
    .

    Compute Venus's phase for each image and record this to two decimal places in Data Table 2 below.

    Data Table 2: Venusian Phases (10 points)
    Note 1: Illuminated angular distances should be smaller than angular diameters.
    Note 2: Phases should be between 0 and 1.
    Image Illuminated Angular
    Distance (arcseconds)
    Angular Diameter
    (arcseconds)
    Phase
    1
    2
    3
    4
    5
    6
    7
    8

    Sign your name to attest to the fact that you collected these data yourself:

    This answer has not been graded yet.



    Go to this website and select "Venus".

    Make a graph of Venus's phase vs. angular diameter. Save it as a png file.

    Question: Upload your png graph. (5 points)

    This answer has not been graded yet.



    Question: Are your measurements more consistent with the geocentric model of the universe or the heliocentric model of the universe? Why? (3 points)

    This answer has not been graded yet.



    Discuss significant sources of error. (2 points)

    This answer has not been graded yet.

Your work in question(s) will also be submitted or saved.
Viewing Saved Work Revert to Last Response
Enter a number.
Enter a number.
Enter a number.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Answer is not case sensitive.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.
Enter a number.