NCSU Physics Test Bank--Feedback and Solutions 1st edition

Textbook Cover

George W. Parker
Publisher: WebAssign


Access is contingent on use of this textbook in the instructor's classroom.

  • Chapter 1: Measurement
    • 1.1: Length, Time, and Mass Units
    • 1.2: Models and Matter
    • 1.3: Analyzing Dimensions of Quantities (7)
    • 1.4: Unit Conversion (1)
    • 1.5: Estimation
    • 1.6: Significant Digits (1)

  • Chapter 2: One Dimensional Kinematics
    • 2.1: Position, Speed, and Velocity (7)
    • 2.2: Instantaneous Velocity (9)
    • 2.3: Constant Velocity Motion (4)
    • 2.4: Acceleration (4)
    • 2.5: Diagrams of Motion
    • 2.6: Constant Acceleration Motion (8)
    • 2.7: Free Fall Motion (6)
    • 2.8: Deriving Kinematics Equations Using Calculus (12)

  • Chapter 3: Vectors
    • 3.1: Using Coordinate Systems (3)
    • 3.2: Vectors and Scalars
    • 3.3: Vector Properties (9)
    • 3.4: Vector Components and Unit Vectors (10)

  • Chapter 4: Two Dimensional Kinematics
    • 4.1: Position, Velocity, and Acceleration Vectors (7)
    • 4.2: Constant Acceleration Motion in Two Dimensions (3)
    • 4.3: Projectile Motion (18)
    • 4.4: Uniform Circular Motion (7)
    • 4.5: Tangential and Radial Components of Acceleration
    • 4.6: Relative Motion (6)

  • Chapter 5: Newton's Laws
    • 5.1: Force
    • 5.2: Newton's First Law
    • 5.3: Mass
    • 5.4: Newton's Second Law (2)
    • 5.5: Gravitational Force and Weight
    • 5.6: Newton's Third Law
    • 5.7: Solving Problems Using Newton's Second Law (33)
    • 5.8: Friction (19)

  • Chapter 6: Applications of Newton's Laws
    • 6.1: Uniform Circular Motion and Newton's Laws (14)
    • 6.2: Nonuniform Circular Motion (1)
    • 6.3: Accelerated Reference Frames (1)
    • 6.4: Drag and Resistive Forces

  • Chapter 7: Energy
    • 7.1: Systems
    • 7.2: Work by a Constant Force (5)
    • 7.3: Scalar (Dot) Products (9)
    • 7.4: Work by a Non-Constant Force (8)
    • 7.5: Kinetic Energy (6)
    • 7.6: Potential Energy (3)
    • 7.7: Conservative and Nonconservative Forces (1)
    • 7.8: Internal Work, Conservative Forces, and Potential Energy (3)
    • 7.9: Potential Energy Diagrams

  • Chapter 8: Energy Conservation
    • 8.1: Energy and Open Systems (1)
    • 8.2: Energy and Closed Systems (16)
    • 8.3: Work Due to Kinetic Friction Forces (5)
    • 8.4: Nonconservative Forces and Energy (4)
    • 8.5: Power (3)

  • Chapter 9: Momentum and Collisions
    • 9.1: Momentum (2)
    • 9.2: Momentum and Open Systems (1)
    • 9.3: Momentum and Closed Systems (6)
    • 9.4: One Dimensional Collisions (29)
    • 9.5: Two Dimensional Collisions (2)
    • 9.6: Center of Mass (8)
    • 9.7: Multi-Particle Systems (3)
    • 9.8: Non-Rigid Body Systems
    • 9.9: Rockets

  • Chapter 10: Rigid Body Rotation
    • 10.1: Angular Position, Angular Velocity, and Angular Acceleration (2)
    • 10.2: Constant Angular Acceleration Motion (9)
    • 10.3: Comparing Angular and Translational Quantitities (9)
    • 10.4: Rotational Kinetic Energy (4)
    • 10.5: Calculating Moment of Inertia (7)
    • 10.6: Torque (2)
    • 10.7: Nonzero Net Torque Motion (9)
    • 10.8: Energy in Rotational Motion (13)
    • 10.9: Rolling Motion (6)

  • Chapter 11: Angular Momentum
    • 11.1: Vector (Cross) Product and Torque Vectors (6)
    • 11.2: Angular Momentum in an Open System (7)
    • 11.3: Rotational Angular Momentum (4)
    • 11.4: Angular Momentum of a Closed System (15)
    • 11.5: Gyroscopic Motion

  • Chapter 12: Equilibrium and Elastic Matter
    • 12.1: Static Equilibrium of Rigid Objects
    • 12.2: Center of Gravity
    • 12.3: Static Equilibrium: Further Applications
    • 12.4: Elacticity of Solids

  • Chapter 13: Gravitation
    • 13.1: NewtonÕs Law of Universal Gravitation
    • 13.2: Relating the Acceleration of Gravity to the Law of Gravitation
    • 13.3: Kepler's Laws of Planetary Motion
    • 13.4: Gravitational Fields
    • 13.5: Gravitational Potential Energy
    • 13.6: Energy in Orbital Motion

  • Chapter 14: Fluids
    • 14.1: Pressure
    • 14.2: Pressure and Depth
    • 14.3: Measuring Pressure
    • 14.4: Buoyancy
    • 14.5: Fluid Flow
    • 14.6: The Bernoulli Equation
    • 14.7: Fluid Dynamics: Other Applications

  • Chapter 15: Oscillations
    • 15.1: Motion of an Object on a Spring
    • 15.2: Simple Harmonic Motion (18)
    • 15.3: Energy in Simple Harmonic Motionn (2)
    • 15.4: Simple Harmonic Motion and Circular Motion
    • 15.5: Pendulum Motion
    • 15.6: Damped Oscillations
    • 15.7: Forced Oscillations and Resonance

  • Chapter 16: Waves
    • 16.1: Wave Propagation (1)
    • 16.2: Traveling Waves (13)
    • 16.3: Waves on Strings (4)
    • 16.4: Reflection and Transmission of Waves (1)
    • 16.5: Energy Transfer by Transverse Waves
    • 16.6: Wave Equation

  • Chapter 17: Sound
    • 17.1: Sound and Pressure
    • 17.2: Speed of Sound
    • 17.3: Sound Intensity (1)
    • 17.4: The Doppler Effect

  • Chapter 18: Superposition of Waves
    • 18.1: Wave Interference
    • 18.2: Standing Waves (3)
    • 18.3: Waves and Boundary Conditions (9)
    • 18.4: Resonance
    • 18.5: Longitudinal Standing Waves (3)
    • 18.6: Standing Waves in Solid Rods and in Two-Dimensional Membranes
    • 18.7: Beats (1)
    • 18.8: Nonsinusoidal Waves

  • Chapter 19: Temperature
    • 19.1: The Zeroth Law of Thermodynamics
    • 19.2: Celcius Temperature Scale
    • 19.3: Absolute Temperature Scale
    • 19.4: Thermal Expansion of Matter
    • 19.5: Ideal Gasses: Macroscopic Description

  • Chapter 20: Work, Heat, and the First Law of Thermodynamics
    • 20.1: Internal Energy, Heat
    • 20.2: Heat Capacity and Specific Heat
    • 20.3: Phase Changes and Latent Heat
    • 20.4: Work and Heat Transfers in Thermodynamic Systems
    • 20.5: The First Law of Thermodynamics
    • 20.6: First Law: Applications
    • 20.7: Rate and Mechanisms of Thermal Energy Transfer

  • Chapter 21: Kinetic Theory of Gases
    • 21.1: Ideal Gas: Molecular Model
    • 21.2: Molar Specific Heat at Constant Volume and Constant Pressure
    • 21.3: Ideal Gasses and Adiabatic Processes
    • 21.4: Equipartition
    • 21.5: Molecular Speed Distribution

  • Chapter 22: The Second Law of Thermodynamics
    • 22.1: Heat Engines
    • 22.2: Heat Pumps and Refrigerators
    • 22.3: Reversible and Irreversible Processes
    • 22.4: Carnot Engines
    • 22.5: Internal Combustion Engines
    • 22.6: Entropy
    • 22.7: Entropy and the Second Law of Thermodynamics
    • 22.8: Entropy: Microscopic Definition

  • Chapter 23: Electric Force and Electric Field
    • 23.1: Electric Charge (3)
    • 23.2: Charging by Induction (5)
    • 23.3: Electric Force and Coulomb's Law (11)
    • 23.4: Electric Field (16)
    • 23.5: Electric Field due to a Distribution of Charge (7)
    • 23.6: Electric Field Lines (1)
    • 23.7: Charged Particles in Uniform Electric Fields (6)

  • Chapter 24: Gauss's Law and Electric Flux
    • 24.1: Electric Flux
    • 24.2: Gauss's Law (10)
    • 24.3: Applying Gauss's Law to Distributions of Charge (12)
    • 24.4: Applying Gauss's Law to Conductors in Electrostatic Equilibrium (10)

  • Chapter 25: Electric Potential
    • 25.1: Change in Electric Potential Energy and Electric Potential (3)
    • 25.2: Electric Potential Difference in a Uniform Electric Field (4)
    • 25.3: Electric Potential Due to a Point Charge (17)
    • 25.4: Calculating Electric Field from Electric Potential (1)
    • 25.5: Electric Potential Due to a Distribution of Charge (3)
    • 25.6: Charged Conductors and Electric Potential (3)
    • 25.7: Measuring the Elementary Charge with the Millikan Oil-Drop Experiment
    • 25.8: Van de Graaf Generators, Precipators, and Other Applications

  • Chapter 26: Capacitors and Dielectric Materials
    • 26.1: Capacitance
    • 26.2: Finding the Capacitance of Different Capacitors (3)
    • 26.3: Capacitors in Series and Parallel (14)
    • 26.4: Energy in Capacitors (5)
    • 26.5: Dielectrics in Capacitors (4)
    • 26.6: Electric Dipoles
    • 26.7: Dielectrics: an Atomic Model

  • Chapter 27: Current and Resistance
    • 27.1: Current (5)
    • 27.2: Resistance (7)
    • 27.3: Microscopic Model of Current
    • 27.4: Resistance Variation with Temperature
    • 27.5: Superconductivity
    • 27.6: Power in Electric Circuits (7)

  • Chapter 28: DC Circuits
    • 28.1: Emf and Internal Resistance
    • 28.2: Series and Parallel Resistors (8)
    • 28.3: Kirchoff's Laws: Node (Current) Rule and Loop (Voltage) Rule (12)
    • 28.4: RC Circuits (15)
    • 28.5: Application: Household Electricity, Electric Safety

  • Chapter 29: Magnetic Forces and Magnetic Fields
    • 29.1: Magnetic Forces on Moving Charges (4)
    • 29.2: Charge Particles Moving in Uniform Magnetic Fields (10)
    • 29.3: Applications: Electric and Magnetic Forces on Moving Charged Particles (1)
    • 29.4: Magnetic Forces on Current-Carrying Conductors (5)
    • 29.5: Magnetic Torque on Current Loops (4)
    • 29.6: The Hall Effect

  • Chapter 30: Magnetic Fields Due to Moving Charges
    • 30.1: The Biot-Savart Law (14)
    • 30.2: Magnetic Forces Between Two Parallel Current-Carrying Wires (8)
    • 30.3: Ampere's Law (6)
    • 30.4: Magnetic Field Due to a Solenoid (3)
    • 30.5: Gauss's Law for Magnetic Fields (5)
    • 30.6: Magnetic Materials

  • Chapter 31: Electromagnetic Induction and Faraday's Law
    • 31.1: Faraday's Law (8)
    • 31.2: Motional emf (7)
    • 31.3: Lenz's Rule (9)
    • 31.4: Induced Electric Fields (2)
    • 31.5: Application: Generators and Motors
    • 31.6: Application: Eddy Currents

  • Chapter 32: Inductance and Inductor Circuits
    • 32.1: Self Inductance (4)
    • 32.2: RL Circuits (18)
    • 32.3: Energy Stored in Magnetic Fields (1)
    • 32.4: Mutual Inductance
    • 32.5: LC Circuits and Current Oscillation (7)
    • 32.6: RLC Circuits and Damped Oscillation (1)

  • Chapter 33: AC Circuits
    • 33.1: Sources of Alternating Current
    • 33.2: AC Circuits and Resistors
    • 33.3: AC Circuits and Inductors
    • 33.4: AC Circuits and Capacitors
    • 33.5: RLC Circuits with AC Voltage Sources
    • 33.6: Power in AC Circuits
    • 33.7: Resonance in RLC Circuits
    • 33.8: Transformers
    • 33.9: Converting Alternating Current to Direct Current: Rectifiers and Filters

  • Chapter 34: Electromagnetic Radiation
    • 34.1: Correcting Ampere's Law
    • 34.2: Maxwell's Equations
    • 34.3: Electromagnetic Plane Waves (2)
    • 34.4: Energy in Electromagnetic Waves
    • 34.5: Momentum in Electromagnetic Waves
    • 34.6: Antennas and Electromagnetic Radiation Generation
    • 34.7: The Electromagnetic Spectrum

  • Chapter 35: Geometric Optics
    • 35.1: Light as Particles and Waves
    • 35.2: The Speed of Light (2)
    • 35.3: Approximating Light as Rays
    • 35.4: Reflected Waves (3)
    • 35.5: Refracted Waves (9)
    • 35.6: Huygens's Principle
    • 35.7: Dispersion of Light
    • 35.8: Total Internal Reflection (6)

  • Chapter 36: Images Formed by Mirrors and Lenses
    • 36.1: Flat Mirrors (1)
    • 36.2: Spherical Mirrors (18)
    • 36.3: Image Formation by Refraction
    • 36.4: Thin Lenses (20)
    • 36.5: Aberrations in Lenses
    • 36.6: Cameras (1)
    • 36.7: Eyes
    • 36.8: Magnifying Lenses
    • 36.9: Microscopes (1)
    • 36.10: Telescopes

  • Chapter 37: Wave Optics
    • 37.1: The Double-Slit Experiment
    • 37.2: Waves and Interference (8)
    • 37.3: Intensity in the Double-Slit Experiment (1)
    • 37.4: Phase Change in Waves Due to Reflection
    • 37.5: Thin Films (14)
    • 37.6: Interferometers

  • Chapter 38: Diffraction and Polarization
    • 38.1: Diffraction Patterns
    • 38.2: Narrow Slit Diffraction (1)
    • 38.3: Resolution and the Rayleigh Criterion (1)
    • 38.4: Diffraction Gratings (12)
    • 38.5: X-Ray Diffraction
    • 38.6: Polarization of Light (11)

  • Chapter 39: Relativity
    • 39.1: Galilean Relativity
    • 39.2: The MichelsonÐMorley Experiment
    • 39.3: The Principle of Relativity
    • 39.4: Simultaneity, Time Dilation, and Length Contraction
    • 39.5: Lorentz Transformations
    • 39.6: Velocity Addition
    • 39.7: Momentum and Relativity
    • 39.8: Energy and Relativity
    • 39.9: Mass Energy Equivalence
    • 39.10: General Relativity

  • Chapter 40: Quantum Physics: Introduction
    • 40.1: Blackbody Radiation and Energy Quantization (7)
    • 40.2: The Photoelectric Effect and Photons (10)
    • 40.3: The Compton Effect and Photon Scattering
    • 40.4: The Wave and Particle Nature of Light
    • 40.5: The DeBroglie Wavelength
    • 40.6: Wave Particle Duality
    • 40.7: Interference of Particles in the Double-Slit Experiment
    • 40.8: The Heisenberg Uncertainty Principle

  • Chapter 41: Quantum Mechanics
    • 41.1: Wave Functions
    • 41.2: The Quantum Particle in a Box (1)
    • 41.3: The Schrodinger Equation
    • 41.4: The Quantum Particle in a Finite Rectangular Potential Well
    • 41.5: Quantum Tunneling through a Barrier
    • 41.6: Applications of Tunneling: Alpha Decay, Fusion, Tunneling Microscopes

  • Chapter 42: Atomic Physics
    • 42.1: Emission and Absorption Spectra
    • 42.2: The Rutherford Experiment
    • 42.3: The Bohr Model of the Hydrogen Atom (6)
    • 42.4: Quantum Mechanics and the Hydrogen Atom (1)
    • 42.5: Wave Functions of the Hydrogen Atom
    • 42.6: Quantum Numbers of the Hydrogen Atom and Their Meaning
    • 42.7: The Pauli Exclusion Principle
    • 42.8: Selection Rules and X-Ray Spectra
    • 42.9: Spontaneous Emission and Stimulated Emission of Photons (1)
    • 42.10: Application: Lasers

  • Chapter 43: The Physics of Molecules and Solids
    • 43.1: Types of Molecular Bonds
    • 43.2: Molecular Energy States and Spectra
    • 43.3: Molecular Bonds in Solids
    • 43.4: Electrons in Metals
    • 43.5: Energy Level Bands in Solids
    • 43.6: Band Theory and Electrical Conductivity in Solids
    • 43.7: Semiconductor Devices
    • 43.8: Superconductivity

  • Chapter 44: Nuclear Physics
    • 44.1: Nuclear Structure and Properties
    • 44.2: Binding Energy
    • 44.3: Models of the Nucleus
    • 44.4: Radioactive Decay
    • 44.5: Processes of Radioactive Decay
    • 44.6: Natural Radioactivity
    • 44.7: Nuclear Reactions
    • 44.8: Application: Nuclear Magnetic Resonance and MRI

  • Chapter 45: Nuclear Physics: Applications
    • 45.1: Neutron Interactions
    • 45.2: Fission
    • 45.3: Fission Reactors
    • 45.4: Fusion
    • 45.5: Nuclear Radiation and the Human Body
    • 45.6: Detecting Radiation
    • 45.7: Nuclear Medicine and Other Uses

  • Chapter 46: Particle Physics
    • 46.1: The Fundamental Forces
    • 46.2: Antimatter
    • 46.3: Mesons
    • 46.4: Types of Particles
    • 46.5: Conservation Laws in Particle Physics
    • 46.6: Strange Particles
    • 46.7: Patterns and Structure in Particle Physics
    • 46.8: Quarks
    • 46.9: Quark Color
    • 46.10: The Standard Model of Particle Physics
    • 46.11: Particle Physics and Cosmology
    • 46.12: Frontiers of Particle Physics

This collection of multiple choice calculus-based introductory physics questions is based on actual exam questions used at North Carolina State University. Each question has unique Socratic-style feedback for each individual answer choice, authored by NC State Physics instructor George Parker. This specialized feedback is designed to help students overcome common misconceptions and problem solving errors.

Every question also has a detailed solution available, useful for student review and self-study. Available as an Additional Resource at no extra charge, these questions are ideally suited as extra practice problems, supplements to homework assignments, or practice examinations.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Measurement
1.3 7 001 002 003 004 005 006 007
1.4 1 001
1.6 1 001
Chapter 2: One Dimensional Kinematics
2.1 7 001 002 003 004 005 006 007
2.2 9 001 002 003 004 005 006 007 008 009
2.3 4 001 002 003 004
2.4 4 001 002 003 004
2.6 8 001 002 003 004 005 006 007 008
2.7 6 001 002 003 004 005 006
2.8 12 001 002 003 004 005 006 007 008 009 010 011 012
Chapter 3: Vectors
3.1 3 001 002 003
3.3 9 001 002 003 004 005 006 007 008 009
3.4 10 001 002 003 004 005 006 007 008 009 010
Chapter 4: Two Dimensional Kinematics
4.1 7 001 002 003 004 005 006 007
4.2 3 001 002 003
4.3 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
4.4 7 001 002 003 004 006 007 008
4.6 6 001 002 003 004 005 006
Chapter 5: Newton's Laws
5.4 2 001 002
5.7 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033
5.8 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
Chapter 6: Applications of Newton's Laws
6.1 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
6.2 1 001
6.3 1 001
Chapter 7: Energy
7.2 5 001 002 003 004 005
7.3 9 001 002 003 004 005 006 008 009 010
7.4 8 001 002 003 004 005 006 007 008
7.5 6 001 002 003 004 005 006
7.6 3 001 002 003
7.7 1 001
7.8 3 001 002 003
Chapter 8: Energy Conservation
8.1 1 001
8.2 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
8.3 5 001 002 003 004 005
8.4 4 001 002 003 004
8.5 3 001 002 003
Chapter 9: Momentum and Collisions
9.1 2 001 002
9.2 1 001
9.3 6 001 002 003 004 005 006
9.4 29 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 026 027 028 029 030
9.5 2 001 002
9.6 8 001 002 003 004 005 006 007 008
9.7 3 001 002 003
Chapter 10: Rigid Body Rotation
10.1 2 001 002
10.2 9 001 002 003 004 005 007 008 009 010
10.3 9 001 002 003 004 005 006 007 008 009
10.4 4 001 002 003 004
10.5 7 001 002 003 004 005 006 007
10.6 2 001 003
10.7 9 001 002 003 004 005 006 007 008 009
10.8 13 001 002 003 004 005 006 007 008 009 010 011 012 013
10.9 6 001 002 003 004 005 006
Chapter 11: Angular Momentum
11.1 6 001 002 003 004 005 006
11.2 7 001 002 003 004 005 007 008
11.3 4 001 002 003 004
11.4 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
Chapter 12: Equilibrium and Elastic Matter
12 0  
Chapter 13: Gravitation
13 0  
Chapter 14: Fluids
14 0  
Chapter 15: Oscillations
15.2 18 001 002 003 004 005 006 007 008 009 010 011 013 014 015 016 017 018 019
15.3 2 001 002
Chapter 16: Waves
16.1 1 001
16.2 13 001 002 003 004 005 006 007 009 010 012 013 015 016
16.3 4 001 002 003 004
16.4 1 001
Chapter 17: Sound
17.3 1 001
Chapter 18: Superposition of Waves
18.2 3 001 002 003
18.3 9 001 002 003 005 006 008 009 010 011
18.5 3 001 002 003
18.7 1 001
Chapter 19: Temperature
19 0  
Chapter 20: Work, Heat, and the First Law of Thermodynamics
20 0  
Chapter 21: Kinetic Theory of Gases
21 0  
Chapter 22: The Second Law of Thermodynamics
22 0  
Chapter 23: Electric Force and Electric Field
23.1 3 001 002 003
23.2 5 001 002 003 004 005
23.3 11 001 002 003 004 005 006 007 008 009 010 011
23.4 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
23.5 7 001 002 003 004 005 006 007
23.6 1 001
23.7 6 001 002 003 004 005 006
Chapter 24: Gauss's Law and Electric Flux
24.2 10 001 002 003 004 005 006 007 008 009 010
24.3 12 001 002 003 004 005 006 007 008 009 010 011 012
24.4 10 001 002 003 004 006 007 008 009 010 011
Chapter 25: Electric Potential
25.1 3 001 002 003
25.2 4 001 002 003 004
25.3 17 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017
25.4 1 001
25.5 3 001 003 004
25.6 3 001 002 003
Chapter 26: Capacitors and Dielectric Materials
26.2 3 001 002 003
26.3 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
26.4 5 001 002 003 004 005
26.5 4 001 002 003 004
Chapter 27: Current and Resistance
27.1 5 001 002 003 004 006
27.2 7 001 002 003 004 005 006 007
27.6 7 001 002 003 004 005 006 007
Chapter 28: DC Circuits
28.2 8 001 002 003 004 005 006 007 008
28.3 12 001 002 003 004 005 006 007 009 010 011 012 013
28.4 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
Chapter 29: Magnetic Forces and Magnetic Fields
29.1 4 001 002 003 004
29.2 10 001 002 003 004 005 006 007 008 009 010
29.3 1 001
29.4 5 001 002 003 004 005
29.5 4 001 002 003 004
Chapter 30: Magnetic Fields Due to Moving Charges
30.1 14 001 002 003 004 005 006 007 010 013 014 015 016 017 018
30.2 8 001 002 003 004 005 006 007 008
30.3 6 001 002 003 004 005 006
30.4 3 001 002 003
30.5 5 001 002 003 004 005
Chapter 31: Electromagnetic Induction and Faraday's Law
31.1 8 001 002 003 004 005 006 007 008
31.2 7 001 002 003 004 005 006 007
31.3 9 001 002 003 004 005 006 007 008 009
31.4 2 001 002
Chapter 32: Inductance and Inductor Circuits
32.1 4 001 003 004 005
32.2 18 001 002 003 004 005 006 007 009 010 011 012 013 014 015 016 017 018 019
32.3 1 001
32.5 7 001 002 003 004 005 006 007
32.6 1 001
Chapter 33: AC Circuits
33 0  
Chapter 34: Electromagnetic Radiation
34.3 2 001 002
Chapter 35: Geometric Optics
35.2 2 001 002
35.4 3 001 002 003
35.5 9 001 002 003 004 005 006 007 010 011
35.8 6 001 002 003 004 005 006
Chapter 36: Images Formed by Mirrors and Lenses
36.1 1 001
36.2 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
36.4 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 019 020 021 022
36.6 1 001
36.9 1 001
Chapter 37: Wave Optics
37.2 8 001 002 003 004 005 006 007 008
37.3 1 001
37.5 14 001 002 003 004 005 006 007 008 011 012 013 014 015 016
Chapter 38: Diffraction and Polarization
38.2 1 001
38.3 1 001
38.4 12 001 002 003 004 005 006 007 008 009 010 011 012
38.6 11 001 002 003 004 005 006 007 008 009 010 011
Chapter 40: Quantum Physics: Introduction
40.1 7 001 002 003 004 006 007 008
40.2 10 001 002 003 004 005 006 008 009 010 011
Chapter 41: Quantum Mechanics
41.2 1 001
Chapter 42: Atomic Physics
42.3 6 001 002 003 004 008 009
42.4 1 001
42.9 1 001
Total 902