4.1� The Concepts of Force and Mass
In common usage, a force is a push or a pull, as the examples in Figure 4.1 illustrate. In basketball, a player launches a shot by pushing on the ball. The tow bar attached to a speeding boat pulls a water skier. Forces such as those that launch the basketball or pull the skier are called contact forces, because they arise from the physical contact between two objects. There are circumstances, however, in which two objects exert forces on one another even though they are not touching. Such forces are referred to as noncontact forces or action-at-a-distance forces. One example of such a noncontact force occurs when a diver is pulled toward the earth because of the force of gravity. The earth exerts this force even when it is not in direct contact with the diver. In Figure 4.1, arrows are used to represent the forces. It is appropriate to use arrows, because a force is a vector quantity and has both a magnitude and a direction. The direction of the arrow gives the direction of the force, and the length is proportional to its strength or magnitude.
image
image
image
Figure zoom�� Figure�4.1�
The arrow labeled represents the force that acts on (a) the basketball, (b) the water skier, and (c) the cliff diver.�(a. � Jesse D. Garrabrant/NBAE via Getty Images/Getty Images, Inc.; b. � age fotostock/SuperStock; c. � Ikon Images/SuperStock)
The word mass is just as familiar as the word force. A massive supertanker, for instance, is one that contains an enormous amount of mass. As we will see in the next section, it is difficult to set such a massive object into motion and difficult to bring it to a halt once it is moving. In comparison, a penny does not contain much mass. The emphasis here is on the amount of mass, and the idea of direction is of no concern. Therefore, mass is a scalar quantity.
During the seventeenth century, Isaac Newton, building on the work of Galileo, developed three important laws that deal with force and mass. Collectively they are called “Newton's laws of motion” and provide the basis for understanding the effect that forces have on an object. Because of the importance of these laws, a separate section will be devoted to each one.


Copyright � 2012 John Wiley & Sons, Inc. All rights reserved.