Uncertainty Help

A summary of rules for calculations with numbers that include uncertainty

A measured value is expressed like this:

 $x \pm \delta x$,

where x is the **measured value** (what we think the measurement is) and δx is the **absolute** uncertainty (how much we think we could be off by).

Note that δ is the lower-case Greek "delta". Some texts use the upper case delta Δ .

We could also express this measurement as a maximum and minimum value

 $x_{ ext{max}} = x + \delta x$

and

 $x_{\min} = x - \delta x.$

If you know the maximum and minimum values, x_{max} and x_{min} , and you want to express the value in $x \pm \delta x$ form,

$$x=rac{(x_{ ext{max}}+x_{ ext{min}})}{2}$$

and

$$\delta x = rac{(x_{ ext{max}} - x_{ ext{min}})}{2}$$

Relative uncertainty is

relative uncertainty as a percentage $= \frac{\delta x}{x} \times 100.$

To find the absolute uncertainty if we know the relative uncertainty,

absolute uncertainty = $\frac{\text{relative uncertainty}}{100} \times \text{measured value}.$

Calculations using numbers with uncertainty

Consider two numbers that have uncertainty $x \pm \delta x$ and $y \pm \delta y$.

Addition: Add the absolute uncertainty of the original numbers to find the absolute uncertainty of the sum.

 $(x \pm \delta x) + (y \pm \delta y) = (x + y) \pm (\delta x + \delta y)$

Subtraction: Add the absolute uncertainty of the original numbers to find the absolute uncertainty of the difference.

 $(x \pm \delta x) - (y \pm \delta y) = (x - y) \pm (\delta x + \delta y)$

Multiplication: Add the relative uncertainty of the original numbers to find the relative uncertainty of the product.

relative uncertainty of $x \times y$ = relative uncertainty of x + relative uncertainty of y

Division: Add the relative uncertainty of the original numbers to find the relative uncertainty of the quotient.

relative uncertainty of $x \div y$ = relative uncertainty of x + relative uncertainty of y

Raising to a power: When we raise a number with uncertainty to a power n, the relative uncertainty of the result is n times the relative uncertainty of the original number.

relative uncertainty of $x^n = n \times$ relative uncertainty of x

If you are taking a square-root, you are raising to the one-half power, the relative uncertainty is one half of the number you are taking the square root of.

relative uncertainty of $\sqrt{x} = rac{ ext{relative uncertainty of } x}{2}$