
Archimedes’ Principle

PURPOSE

• To connect the words of Archimedes’ Principle to the actual behavior of submerged objects.

• To examine the cause of buoyancy; that is, the variation of pressure with depth in a fluid.

• To use Archimedes’ Principle to determine the density of an unknown material.

EQUIPMENT

Virtual Buoyancy Apparatus

Pencil

SIMULATION AND TOOLS

Open the Buoyancy Apparatus1 simulation to do this lab.

EXPLORE THE APPARATUS

We’ll use the Buoyancy Apparatus in this lab activity. You can get quick access to help by rolling
your mouse over most objects on the screen.

Figure 1: The Buoyancy Apparatus

To investigate buoyant forces, we need to measure the weight and volume of objects as well as
their submerged weight when fully or partially immersed in a fluid. We’ll use water as our fluid
in this lab. We also need to measure the weight and volume of the fluid displaced. A hanging
scale and a digital scale are available for measuring the weights of our objects. The overflow of
water from the tank spills into a graduated cylinder. The volume of this displaced water can be read
from the graduated cylinder, and the weight of the water can be found by weighing the graduated
cylinder before and after overflow.

Two simple and two compound objects are available for study. They are composed of cork, alu-
minum, and an unknown material. These objects can be weighed in air and when partially or fully

1../simulation/b7oy2c6yb.swf
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submerged. The hanging scale is raised and lowered by dragging the metal arm that supports it.
Both the hanging scale and the graduated cylinder can be read more precisely by zooming in. The
graduated cylinder is emptied by dragging and releasing it above the tank.

You’ll find that some actions that could be done with real apparatus are forbidden. For example, if
you remove the cork and aluminum object from the hanging scale and then attach a new object to
the scale, you’ll find no further overflow is possible without first emptying the cylinder. Similarly,
you can’t weigh more than one object on the digital scale at a time, and you can’t make a mess by
lowering an object into the water while the cylinder is on the digital scale. Another thing that is
largely forbidden is dragging the screen when you’re zoomed in. When you try to move an onscreen
object and it doesn’t behave as expected, this means that something else needs to be done first.
There aren’t too many choices.

Archimedes’ Principle:

A body wholly or partially immersed in a fluid will experience a buoyant force equal to the
weight of the fluid displaced.

This and many other phrases you’ll hear when studying buoyancy are mostly meaningless without
direct experience. So, our exploration of the apparatus will mainly focus on the various situations
you’ll encounter and the related terminology. While we’re at it, our use of submerged in some cases
and immersed in others is not meant to suggest two different phenomena. Both refer to an object
fully or partially in a fluid.

1. What’s a “Buoyant Force”, and What Exerts it?

Let’s try it with the system in Figure 1. Right (or Ctrl) click and zoom in on the hanging scale.
It appears to read zero initially. This sort of scale is not very precise. Our simulation reflects that
level of precision. (Zoom back out.)

Now drag the cork and aluminum compound object and drop it somewhere below the hanger. It
should become attached to the hanger. (If it refuses to attach, you probably have the scale already
lowered somewhat, or there might be some water in the graduated cylinder.) You should find that
it weighs about 4.4 N. Zooming in and estimating a digit we might have 4.41 N. Drag and drop it
on the digital scale and you’ll get a more precise answer of about 4.41 N. Which scale should you
use? We’ll always use the value from the hanging scale, 4.41 N in this case, unless we have to use
the digital scale for a measurement. This will only happen when we need to weigh the graduated
cylinder.
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Now for the “(submerged) weight when fully or partially immersed in the water.” Drag the object
back to the hanging scale. Slowly drag the support arm above the scale downward until the
aluminum disk is about half submerged. The scale might read about 3.73 N. This is a judgment
call since the location of the half-way point is uncertain. Let’s use that value in the following
discussion. That’s the “submerged weight.” We’ll use the term W ′ (“W prime”) to represent the
submerged weight.

So, its actual weight is 4.41 N and it appears lighter when partially submerged, maybe 3.73 N.
It didn’t lose weight. The water is providing an upward force on the bottom of the disk. So, we
would say that a 4.41-N object was buoyed up by a force F b so that it appears to weigh, or has a
submerged weight of, 3.73 N. Since it’s in vertical equilibrium, we can say

∑
Fy = 0.

Let’s look at the forces and draw vector arrows to represent each force.

We know the object has some actual weight, a downward force, W. We measure this force with our
scale by finding the upward force that balances it. But the weight, W, is a downward force.

When the object is somewhat submerged, the scale exerts a lesser upward force, W′.

Since the pair of disks is still in equilibrium, some additional upward force must make up the
difference. This is the buoyant force, Fb.

Figure 2

Since the object is still in equilibrium, the three vector arrows shown in Figure 2a must vectorially
add to equal zero. This is shown in two ways in Figures 2b and 2c. Figure 2c is a free-body
diagram, FBD, where vectors radiate away from a point representing the object that the forces act
on. We’ll make use of FBDs throughout this lab to help us picture the forces acting on an object
and to help us create equations to relate the force involved.

Our FBD guides us to add the three force vectors together to equal a net force of zero.

∑
Fy = Weightsubmerged + Fb + Weight = 0∑
Fy = W′ + Fb + W = 0
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In scalar form, which we’ll use from here on, we add the magnitudes of the forces together with
signs indicating their directions. Since only the weight is downward,

W ′ + Fb −W = 0,

so

Fb = W −W ′.

Getting back to our measured values,

a Fb = W −W ′ = 4.41 N − 3.73 N = N.

This value, 0.68 N, is the buoyant force. The buoyant force is the part of the weight that the scale
no longer has to support because a new upward force is present. It’s an upward force caused by
the pressure on the bottom of the disk. If you lower the disk further, the buoyant force becomes
larger and the submerged weight, W ′, is reduced by an equal amount. Try it.

2. What is the “Fluid Displaced” and How is its Weight Related to the Buoyant
Force?

In the preceding section, you focused on the buoyant force as an apparent reduction in the weight
of the submerged object. What’s the source of this force?

With the cork and aluminum disk pair attached to the scale, lower the scale as far as it will go.
A lot of water will overflow into the cylinder. When that’s done, raise the scale back up. Now
gradually lower the disks into the water. Notice the behavior of the water. Its level rises because
the disks are “displacing” some of the water. That is, they’re taking the water’s place. So it rises
to make room.

When the water occupied that space, it was supported by the water below it. When the disks
occupy the same space, the water below them provides exactly the same amount of upward force.
That’s the buoyant force. It was there all the time, but it was just holding up the water until the
disks arrived.

So “the buoyant force is equal to the weight of the fluid displaced!” We need to find out how to
determine that weight.

Refill the tank. To do this just drag the graduated cylinder somewhere above the tank and release
it. It will empty itself and return to its post. Now gradually lower the disks into the water and
notice what happens to the “displaced water.” Since our tank was initially full this time, the
displaced water overflowed into the graduated cylinder. We did that so that we could weigh it or
find its volume. Let’s use our previous results to see the relationship between the buoyant force
and the displaced fluid’s weight. If your apparatus is not right where you left it at the end of Part
1, repeat Part 1 to restore it. Be sure to zoom in once for better precision.
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Insert your value from 1a in the following blank.

b The displaced water’s weight = the buoyant force on the disk = N

c Drag the graduated cylinder onto the digital scale.

Scale reading with cylinder and water = N

That’s the weight of the fluid plus the weight of the graduated cylinder. So we need to find the
weight of the graduated cylinder and subtract it from the total to find the weight of the water.
Empty the cylinder as before. Place the cylinder on the digital scale.

d Weight of empty graduated cylinder, Wc = N

e Fb = weight of water displaced = Wwater + cylinder −Wcylinder = N

Ex: (1.69 − 0.98)N = 0.71 N

Got it? We’ll see why your values for (b) and (e) were about the same shortly. But for now, you
should understand what we mean by the statement that the buoyant force equals the weight of the
fluid displaced.

3. Finding and Using the Volume of the Fluid Displaced

Now suppose we didn’t have either of our scales. Could you still determine F b? We know that the
weight of the water can be found from W water = mwaterg = ρwatergV water. Since we know that the
density of water is 1000 kg/m3, we could calculate the weight of the water if we knew its volume.

You can zoom in on the cylinder to read the volume reading, but there’s a “Cylinder Zoom” feature
that does that for you. You can now read the volume in mL.

NOTE:

The graduated cylinder measures volume in mL. You’ll always need to convert it to m3.
(1 mL = 1 cm3 = 10−6 m3)

f Use the equation below to find F b.

Fb = Wwater displaced = ρwatergVwater

= 1000 kg/m3 × 9.80 N/kg × m3

= N

Ex: 1000 kg/m3 × 9.80 N/kg × 72 × 10−6 m3 = 0.71 N
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How about the aluminum disk? If you weighed it and then completely submerged it, you could
measure its volume and then compute its density and convince the king that his disk is not silver.

Incidentally, we went to extra expense in providing a non-wetting polypropylene graduated cylinder
in this apparatus to avoid the need to account for a meniscus. You’re welcome.

THEORY

Archimedes’ Principle

Archimedes’ Principle is very easy to state in words, but learning how to use it takes practice in a
variety of situations. In this lab, we’ll first explore the literal meaning of this principle. Then we’ll
put it to use in a couple of situations. You’ll use the wording of the principle to draw free-body
diagrams (FBDs) and create equations that can be used to find unknown quantities such as the
volume, mass, or density of an object or of the fluid it’s immersed in.

Solving problems using Archimedes’ Principle can be really puzzling. The most important step is
to use the words of the principle to create an equation. One important tool to help you create
your equation is a free-body diagram. Archimedes’ Principle usually involves objects in vertical
equilibrium. And the terms that go into

∑
Fy = 0 will likely come from the words of Archimedes’

Principle—a body (mass, weight) buoyed up by (force), etc. In case you’ve forgotten...

Archimedes’ Principle:

A body wholly or partially immersed in a fluid will experience a buoyant force equal to the
weight of the fluid displaced.

Without a bit more information, this is little more than magical incantation! We need to dig a little
deeper and learn what causes the buoyant force and why the force varies as objects are gradually
immersed in a fluid. We’ll start with a couple of interactive animations built into the lab apparatus.

Variation of Pressure with Depth

Click the Pressure button to load an interactive simulation. Adjust the small cylinder up and
down as needed to recreate the discussion that follows.

In Figure 3a, a solid brass cylinder is shown above a tank completely filled with water. Atmospheric
pressure acts essentially equally on all sides of the cylinder and on the water’s surface as indicated
by the five Patm arrows in Figure 3a. At all times the horizontal pressures will cancel. So we need
only examine the vertical pressures.
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Figure 3

Gradually lower the cylinder until about 1/4 of it is submerged, as shown in Figure 3b. (The
water overflowing the sides is not shown. It also magically returns as needed.) Notice the vectors
that appear and change as you move the cylinder up and down. A black vector, Pup, the upward
pressure exerted by the water, is shown in two places along with a blue ∆P vector.

1 What happens to the upward pressure, Pup, and ∆P as the cylinder is lowered? Don’t let the
cylinder become completely submerged for now.

At a given depth, h, in a container of water exposed to the atmosphere, there is a pressure due to
the weight of the column of water above that point plus the weight of the atmosphere above the
surface. This pressure is omnidirectional and given by

P = ρwgh+ Patm. (1)

We’re only interested in the pressures at the top, Pdown, and bottom, Pup, of the cylinder. We’ll
refer to these more generally as P1 and P2, respectively. With the cylinder partially submerged,
only the upward pressure on the bottom of the cylinder appears. (See Figure 4a.)

What about ∆P? ∆P is the difference in pressure between the top and bottom of the cylinder.
Currently, the top of the cylinder has a pressure Pdown = Patm acting on it. The pressure acting
on the bottom is Pup, which equals Patm + ρwgh2. ∆P, the difference in these two pressures, is
just Pup − Pdown = ρwgh2.

This explains why ∆P always (so far) equals Pup. Let’s change that.
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Figure 4

As you continue to drag the cylinder downward, there will continue to be just the three vectors
and each will continue to increase in length but remain equal to each other until a specific point is
reached.

2 Where is the top of the cylinder when this transition occurs?

Continue to lower the cylinder until it’s about halfway to the bottom of the tank as shown in
Figure 4b. You can now clearly see the downward vector Pdown.

Drag the cylinder up and down in this middle region of the tank. As you do this, the vector ∆P
behaves differently than the way it behaved before.

3 What happens to ∆P as the cylinder is lowered while completely submerged?

4 What happens to Pup and Pdown as the cylinder is lowered while completely submerged? How
does this account for your answer to the previous question?

In summary, the difference in pressure from top to bottom is just P2 − P1 = ρg(h2 − h1). In the
case of a partially submerged object, h1 = 0, so this equation will work for either a partially or
fully submerged object.

The Effect of the Pressure Difference, ∆P, on the Buoyant Force

We’ve found a simple equation that gives the pressure difference between the top and bottom of
our cylinder when it’s somewhat or totally submerged. So how does this relate to buoyancy?
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Figure 5: Note that 5a is the same as 3b, and 5b is the same as 4b.

For a cylinder of top and bottom surface area, Ac, the total force exerted by the water pressure
would be

Fnet water = F2 − F1 = (P2 − P1)Ac = ρg(h2 − h1)Ac.

Consider a cylinder of height hc.

In Figure 5a, with h2 =
1

4
hc, ρwg(h2 − h1) reduces to ρwg

(
1

4
hc

)
.

The total force, F net water, exerted by the water pressure on the cylinder would be

Fnet water = ρwg

(
1

4
hc

)
Ac

=
1

4
ρwgVc

= the weight of the water that would occupy
1

4
the volume of the cylinder

F2 = “the weight of the water displaced.”

Now consider the totally submerged cylinder in Figure 5b.

In this case, h2 − h1 = hc, so ρwg(h2 − h1) reduces to ρwghc.

The total force, F net water, exerted by the water pressure on the cylinder would be

Fnet water = ρwghcAc

= ρwgVc
= the weight of the water that would occupy the total volume of the cylinder

F2 = “the weight of the water displaced.”
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So, no matter what volume of the cylinder is submerged, the buoyant force acting on it equals
the weight of an equal volume of water.

What about different shapes? How about a cone or a sphere? The result is exactly the same but
the proof is not so simple. We won’t pursue that any farther.

Consider three cases: a cylinder of aluminum, a cylinder of liquid water, and a cylinder of cork. A
cylinder of liquid water would be impossible to create, but we can imagine it to be enclosed in a
thin, weightless, cylindrical shell.

5 As a cylinder of aluminum is lowered into our tank, when will the buoyant force, F b, begin to
exceed the cylinder’s weight?

(a) when it’s partially submerged; (b) when it’s fully submerged; (c) never

6 Why is this the case?

7 Once the cylinder of aluminum is fully submerged, we might hold it in place by attaching which
of the following?

(a) a block of cork; (b) a block of aluminum; (c) a block of water; (d) none necessary

Click the Buoyancy button. Select the aluminum cylinder. Use this to test your reasoning and
correct it if necessary.

8 As a cylinder of water is lowered into our tank, when will the buoyant force, F b, begin to exceed
the cylinder’s weight?

(a) when it’s partially submerged; (b) when it’s fully submerged; (c) never

9 Why is this is the case?

10 Once the cylinder of water is fully submerged, we might hold it in place by attaching which of
the following?

(a) a block of cork; (b) a block of aluminum; (c) a block of water; (d) none necessary

Select the water cylinder. Use this to test your reasoning and correct it if necessary.

11 As a cylinder of cork is lowered into our tank, when will the buoyant force, F b, begin to exceed
the cylinder’s weight?

(a) when it’s partially submerged; (b) when it’s fully submerged; (c) never

12 Why is this is the case?
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13 Once the cylinder of cork is fully submerged, we might hold it in place by attaching which of
the following?

(a) a block of cork; (b) a block of aluminum; (c) a block of water; (d) none necessary

Select the cork cylinder. Use this to test your reasoning and correct it if necessary.

14 It’s useful to leave all three cylinders fully submerged at about the same depth and then click
the different icons to switch among the three materials. There is one thing that is the same
regardless of the cylinder chosen. What is it? Why?

One final suggestion: reopen the Pressure simulation. Lower the cylinder all the way to the
bottom. Any thoughts?

Archimedes’ Principle with Additional Applied Forces

Most of our work with Archimedes’ Principle includes additional forces such as the ones suggested
at the end of each of the three sets of questions above. Typical examples include:

• A lifeguard pulling a person up onto a dock will find that the person seems to get heavier
as she’s lifted further out of the water. This leads to the strategy of starting out with a
large upward pull to give the swimmer an initial upward speed, making the rest of the pull
easier.

• A buoy in a river will be held in place by a heavy weight sitting on the river bottom. The
“one final question” above will come into play in this case.

• The buoyant force might be used to partially or fully support another object. For example,
a life jacket has to supply enough buoyant force to support its own weight as well as the
person wearing it. A waterlogged life jacket might continue to supply the same lift, but the
added water will provide an additional undesirable downward force.

Analyzing such situations usually involves the use of translational equilibrium equations. That is,
if a body is in equilibrium, the sum of the forces in any direction will equal zero. A buoyant force
is just another force. It’s just a bit trickier because it varies as an object is submerged to varying
depths.

Just as important, a careful free-body diagram, FBD, is essential in working out what objects and
forces are involved.

Figure 6
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Example 1: A steel anchor weighs 2000 N in air. How much force would be required to support it
when fully submerged in water? That is, what is its apparent weight, W ′, when submerged?

W ′ is the unknown upward support force in this case.

In addition to the upward support force, W ′, there is the upward buoyant force, F b, and the
downward gravitational force, that is, its weight, W.

The sum of these forces equals zero. So, (using magnitudes) Fb +W ′ = W.

Other considerations:

Fb = weight of fluid (water) displaced
= ρwatergVwater = ρwatergVanchor,

since the anchor displaces an equal volume of water.

And, since we know the weight and mass of the anchor, we can find its volume by looking up its
density and using ρsteel = manchorV anchor.

What will change as the anchor breaks the surface of the water?

PROCEDURE

Please print the worksheet for this lab. You will need this sheet to record your data.

In the following sections, you’ll collect and analyze data to investigate Archimedes’ Principle in some
typical situations, such as the one suggested in Example 1. You won’t be provided step-by-step
directions, but you’ll have blanks provided for the data you need to collect. This method is being
used because buoyancy problems are always sort of free-form. It’s not about finding an equation
that fits; rather, you’ll try to find a way that your information fits into Archimedes’ Principle.

You’ll also get guidance in developing FBDs as well as equations describing your FBDs. Note that
the equations are in scalar form. That is, we’ll say “The sum of the upward forces = the sum of
the downward forces” (all positive magnitudes) rather than “The sum of the upward forces + the
sum of the downward forces = 0” (all vectors).

I. Confirm Archimedes’ Principle for the Case Where ρobject > ρliquid Using Over-
flow

In this section, we’ll directly measure the buoyant force and the weight of the water displaced for
an object that sinks. We’ll then confirm that they are equal. Our object will be an aluminum disk.

If either the Buoyancy or Pressure simulation is still open, click the Close button.
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Figure 7a and Figure 7b

Figure 7c and Figure 7d

FBD 7e
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Direct measurement of the buoyant force: weighing the aluminum disk in air (Figure 7a)
gives us W. Weighing it when submerged (7c) gives us W ′. From our FBD (7e), we can see that

Fb +Wal
′ = Wal,

so

Fb = Wal −Wal
′. (2)

Measurement of the weight of the water displaced: weighing the empty graduated cylinder
(7b) gives us W cyl. Weighing the cylinder after receiving the overflow water (7d) gives us W cylw

displaced.

Fb = Wwater displaced = (Wcylw displaced) −Wcyl (3)

1 Collect and record the following data: W al, W cyl, W al
′, W cylw.

2 Calculate the buoyant force, F b, twice, using equation 2 and equation 3.

Show your calculations of F b for each method and the percentage difference between the two.

II. Confirm Archimedes’ Principle for ρobject < ρliquid Using Overflow

In this section, we’ll directly measure the buoyant force and the weight of the water displaced for
a floating object, and we’ll confirm that they are again equal. Our object will be a cork disk. This
time, you’ll fill in all the missing pieces. Use Part I as a model. Collect and record the data required
below.

Also fill in the missing pieces below, including Figures 8a, 8c, 8d, and FBD 8e.

1 Submit your responses for Figures 8a, 8c, and 8d by uploading Screenshots of each. For
8a and 8c, just capture an image of the scale. For 8d, capture an image of the digital scale
reading.
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Figure 8a and Figure 8b

Figure 8c and Figure 8d

2 Weighing the cork disk in air (Figure 8a) gives us W cork. Weighing it when partially submerged
(8c) gives us Wcork

′. This time it floats. (Note the slack string.)

So, Wcork
′ = N.

3 Draw FBD 8e to the left of the floating cork provided. There should be two force vectors.

Also use the Sketch tool to create a screen-sketch by adding and labeling a pair of vector
arrows to the left of the floating cork in the Buoyancy Apparatus. Take a Screenshot of the
FBD and the cork and upload it as “Buoy FBD8e.png”.

FBD 8e

Use equations 2 and 3 as a guide in producing equations 4 and 5.
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4 From FBD 8e, we can say that

Fb = . (4)

Weighing the empty graduated cylinder (8b) gives us W cyl. Weighing the cylinder after receiv-
ing the overflow water (8d) gives us W cylw displaced.

Fb = (5)

5–8 Collect and record the following data: W cork, W cyl, W cork
′, W cylw.

9–11 Calculate the buoyant force, F b, twice, using equation 4 and equation 5.

Show your calculations of F b for each method and the percentage difference.

III. Determine the Density of an Unknown Material

We’ve confirmed that Archimedes’ Principle correctly describes the forces acting on a body wholly
or partially submerged. That gives us a starting point for more complex situations that are not so
straightforward. One of your object choices is a compound object with a cork on top and a rod of
negligible volume connecting it to a large black unknown object below it. It’s in the right-hand
column. The unknown object is more dense than cork; otherwise, the system would try to flip
upside down. Your task is to determine the density of the unknown object. In the process, you’ll
first have to determine the density of the cork.

Density of the Cork

You already know the weight of the cork from Part II. From the weight, you can calculate the mass.
What you need is the cork’s volume. You can find that using another compound object–the cork
with the attached aluminum disk. It’s in the middle of the left column of objects.

1–7 Attach the cork/aluminum object to the hanging scale. Lower the system slowly while
watching the water overflow into the cylinder. Continue until the aluminum cylinder becomes
completely submerged. Use “Cylinder Zoom” to read and record the volume of water displaced
by the aluminum.

Continue a bit further to see that the connecting rod is ignored, causing no overflow. Continue
on and notice that the cork becomes completely submerged. You want to know the volume
of the cork. Record the following data to find the volume of the cork, convert it to m3, and
compute its density in kg/m3.

1 V al in ml

2 V al + cork in mL

3 V cork in mL

4 V cork in m3
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5 W cork in N (from Part II)

6 M cork in kg

7 ρcork in kg/m3

Show the calculations for V cork (mL), V cork (m3) and ρcork.

Finding the Density of the Unknown Material

Return the cork/aluminum object to its home. Empty the graduated cylinder.

8 Attach unknown system #2 (bottom left) to the hanging scale. Gradually lower it as far down
as it will go. What is different about this compound system relative to the cork/aluminum
system?

9 Draw FBD 9 to the left of the floating cork-unknown system provided. Also use the Sketch
tool to create a screen-sketch by adding and labeling vector arrows to the left of the floating
cork in the Buoyancy Apparatus. Take a Screenshot of the FBD and the cork and upload it
as “Buoy FBD9.png”.

FBD 9

10 From your FBD, you can say that

Fb = . (6)

11 We want to know the density of the unknown material, ρu. If we could find its weight, we
could use Wu = ρugVu, since we know g and we can measure V u using our overflow system.

So to find ρu, we just need W u. We know W cork, so if we knew F b, we could find ρu using
equation 6.

From equations 4 and 5, you know two different ways of finding F b. So you’re ready to go.

So we have two equations, Fb = Wcork +Wu, and Wu = ρugVu.

Combine the two equations and solve for ρu. Show your algebra.

12–16 Determine the total buoyant force, F b, by either of the methods suggested above.

Show your calculations of the buoyant force, F b, and the unknown density, ρu.

17 The unknown material is concrete. Check online to see if your result is reasonable. Note that
concrete varies in density depending on its manufacture.
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