Dynamics — Free Fall, Apparent Weight, and Friction
(Honors)

PURPOSE

e To investigate the vector nature of forces.

e To practice the use of free-body diagrams (FBDs).

e To learn to apply Newton’s Second Law to systems of masses.
e To develop a clear concept of the idea of apparent weight.

e To explore the effect of kinetic friction on motion.
EQUIPMENT
Virtual Dynamics Track Simulation

VPL Grapher

Pencil

Watch overview video!.
SIMULATION AND TOOLS

Open the Virtual Dynamics Track simulation to do this lab.
You will need to use the VPL Grapher to complete this lab.

EXPLORE THE APPARATUS

Open the Virtual Dynamics Track simulation. You’ll see the low-friction track and cart at the
top of the screen. At the bottom you’ll see a roll of massless string, several masses, and a mass
hanger. Roll your pointer over each of these to view the behavior of each. Note the values of the
masses. Also note that the empty hanger’s mass is 50 g. If you move your pointer over the cart,
you’ll see that its mass is 250 g.

1 Drag the cart near the left end of the track.

2 Drag the spool of massless red string somewhere just to the right of the cart (Figure 1a).
Release it by releasing your mouse button. A segment of string will attach to the cart and find
its way over the pulley. A small loop (Figure 1b) will form at its lower end.

3 Drag the mass hanger until its curved handle is a bit above the loop (Figure 1c). Release your
mouse button and the hanger will attach (Figure 1d). The cart will take off. It’s alive! Drag
the cart back and forth. Everything should work just as you’d expect.

Give it a toss or use Go to launch it with a known initial negative velocity.

"http:/ /virtuallabs.ket.org/physics/apparatus/02_kinematics,/
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a b c d
Figure 1

4 Check out the Brakes On/Off toggle button.
5 Try Reset All
6 Reattach the string and hanger.

Turn on the brake and move the cart near the middle of the track. (Just so you can see the hanger.)
You can add to, and remove masses from, the cart or hanger as needed. Drag the largest mass, 200
grams, and drop it when it’s somewhat above the base of the spindle of the cart (Figure 2). Drag
a 50-g mass onto the hanger.

¥~ hold
release

Figure 2

We refer to this group—cart, string, and hangers—as a system. You can actually call any group
of objects a system—the solar system, for example. We’re going to investigate how our cart, string,
and hanger move together as a system. The massless string transmits forces between the cart and
hanger.

7 Toss the cart around and notice how it moves. Experiment with a variety of masses on both the
cart and hanger. Investigate what determines the system’s acceleration. You know how to add
masses. You can remove them just by clicking. Try this. Turn on the brakes to hold the cart
still and then add two masses to the cart and to each hanger. Click once on each of the three.
The top mass will disappear in each case. Another three clicks will empty them all. Clicking on
an empty hanger will remove it. The Reset All button will then remove the massless string.

We’ll now use this and other arrangements of masses to look at various systems, how they move,
and why. We’ll quantify what we find using Newton’s Second Law, ¥F = ma where XF is the
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net, external force on the system, m is the total mass of the system, and a is the
acceleration of the system.

8 Restore your system to its simplest configuration—empty cart, string, and empty hanger. Turn
on the brake and move the cart near the left bumper.

PROCEDURE

Please print the worksheet for this lab. You will need this sheet to record your data.
TIA. Drawing Force Vectors

We’ve found that writing down what we know and want to know is essential to successful problem-
solving. But with forces, there’s the added directional information that’s best described with a
figure. Figure 2 is a nice representation of what our apparatus looks like, but it doesn’t show us
the forces. Drawing force vectors can make it easier to identify the forces acting on systems. They
also guide us in deciding which forces go into the equation XF = ma.

Free-body diagrams

Click ==+ to turn on Dynamic Vectors. You'll want to leave Dynamic Vectors on most of
the time during this lab. Adjust the check boxes in the apparatus to match Figure 3.

All Vectors
No Vectors
Velocity
Normal2

Net Force,a
Hangers
Friction
Weight(x)
Weight(x,yV2
Weight/2

I EE RN

RODEROROOLC

Figure 3: Vector Display Controls

You should now see something like Figure 4. (Some extra labels have been added for clarity.)
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Figure 4: Dynamic Vectors

The two groupings of force vectors are actually dynamic versions of free-body diagrams (FBDs).
In an FBD, we draw an object, represented by a dot, with scaled vector arrows radiating from it
indicating the magnitude and direction of all the forces acting on it. Our dynamic FBDs don’t
include the dots but the objects represented are the cart and two hangers. The hanger FBDs move
along with the hangers. The FBD for the cart sits at the midpoint of the track. An earlier version
had it attached to the cart but it was maddening to try to follow it as it moved.

The cart’s vector cluster can also include the velocity, which is of course not a force. It can
also include “Net Force, a,” which represents the net force on the entire system and the system
acceleration. None of these will be part of an FBD since they are not “external forces acting on an
object.” They’re provided because they're very useful, as you’ll see.

Cart Forces

In the vertical, you see the normal force, N, and the weight, W, which are equal and opposite. Thus
there is no vertical acceleration by the cart, and there won’t ever be with a level, indestructible
track. (Fy, and W are drawn half scale as Fy,/2 and W /2 because they’re so large and tend to go
off the page.) Uncheck the “Normal” force and “Weight” vectors.

In the horizontal, you see the tension in the (right) string, T, and the friction force, Fg. They're
also equal (while the cart is at rest) but opposite. Thus there is currently no acceleration in the
horizontal because the brake is holding things at rest.

Turn on the “Net Force” vector ( ¥ NetForce, a) 5o that you can monitor ¥F and the acceleration
once the cart starts moving. You’ll just see the label “Fnet, a” but no vector arrow so far.

Hangar Forces

The forces on the mass hanger are the opposing forces Ty, and W,. W, is the weight of the right
mass hanger. T, is again the tension in the string. For a massless string, the tension is the same
throughout. (For a non-massless string, the trailing end will have less tension than the leading end.
We'll discuss that no further!) It’s important that you understand that we use the term tension
in two ways. In everyday use we think of the tension as the tautness of a string. That tautness is
caused by forces pulling on each end. The reaction force by the strings’ ends on the cart and hanger
are also referred to as the tension. So we say that the tension force provided by the string acts
equally (for our massless string) on both the cart and the hanger. So the pair of T’s will always
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represent equal magnitude forces acting on the objects the string is attached to. Make sure that
you see how that’s represented in Figure 4.

The System

Newton’s Second Law, XF = ma, describes the effect of a net force on an object or group of objects,
referred to as the system, that move with some acceleration, a, due to the net, external force, XF,
acting on the system. The mass, m, is the total mass of the system.

For a system of more than one object Newton’s Second Law works for the whole group or any part
of the group.

a In Figure 5, we might consider the cart and hanger as a system and then consider the net,
external force on that system, and the mass of the system.

b We might also say, “let’s consider just the cart as the system.” We’d then look at the forces
on the cart, the cart’s mass, etc.

c In this lab, we’ll think of the cart and hangers as “the system” unless stated otherwise.

Whichever way we go about it, we’ll find the same acceleration since all parts have the same
acceleration. We will have to deal with the change in direction due to the pulley. More on that
soon.

The Net Force

In Figure 4, the cart-hanger system remained at rest because of the brake which exerts a friction
force, F¢, which changes to match any amount of weight that can be added to the hanger. When
you release the brake the vectors should change to look like Figure 5. Try it at few times. There
is now a net force, so there will be an acceleration. Try turning the brake on and off and notice
how the forces change. You can also just hold and release the cart with the mouse. You're sort of
acting like a brake but no vector will be shown to represent this.

=

e
.

Figure 5: The Net Force

IB. Accelerated System of a Cart on a Level Track with Mass Hanger and No
Friction

Let’s see how we can use FBD’s to help us think about a simple system and then build some
equations to describe it mathematically.
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Set up the system shown in Figure 6. You need a level track with an empty hanger on the right
and an extra 200 g on the 250-g cart.

.

I — hod

release

Bod <~
- P
A

Figure 6: Adding Cart Masses

What would be the acceleration of the cart when it’s allowed to move freely? To use Newton’s
Second Law, we need to know the mass of and net force on a system.

The system we’ve chosen has two parts that move independently and each part has its own mass
and forces acting on it. But toss the cart a few times. Some observations:

1 Although the cart and hanger are moving in different directions, they’re otherwise moving
identically. For example, when the hanger is moving at, say, 2 m/s, the string ensures that the
cart is also moving at 2 m/s.

2 This also includes direction, if you don’t mind a minor 90° bend in the middle. Motion left
and right by the cart is the same as motion up and down by the hanger. The pulley is just
redirecting it. We’ll work with the bendy direction and say that the positive direction
is as shown in Figure 7. For the cart, the +xz-direction is to the right. For the
hanger, it’s downward.

—
%

I ,*\

Figure 7: the “z-direction”

3 We don’t know the net force on either object but if we look at the cart, string, and hanger as
one system, there is only one unbalanced, external force acting on the system—the weight of
the hanger. (The cart’s weight and normal force cancel.) So our system behaves the same as
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the one shown in Figure 8 where the masses of the cart and hanger make up the total mass and
the weight of the hanger is the net force.

< Cart m Wihanger)

Figure 8: The System Mass (Note the cool optical illusion. The squares don’t look quite square.)

OK, let’s use the cart and hanger as our system. Think about these three questions.

a  Mgystem =7
b Z]Fon system =7

C  QAgystem =7

a Clearly, both the cart and hanger are accelerating. So Mmgystem = 450 g + 50 g = 500 g =
0.500 kg. (Note the mks units.)

b There are three forces present: T, Ty, and W,. But both T,’s are internal to the system.
The only external force is Wy. Wy = mpangerg = 0.050 kg x 9.80 N/kg = 0.49 N.

>F 0.49 N

C a= —
(mcart + mhanger) 0.500 kg

= 0.98 m/s’

Confirm these results experimentally.

Using your virtual apparatus, confirm your results. If you recall, in the acceleration lab you found
the acceleration of a cart from the slope of a velocity-time graph. That would be a good method
to use here.

4

With the brake on, turn on the sensor. Then release the brake. Turn off the sensor when the
cart reaches the bumper.

Copy Data to Clipboard and use Ctrl+V to paste it into Grapher.

Turn on Graph #2 to display the v-¢ graph. (Turn on Graph #3 just to shrink Graphs #1 and
42.)

Sketch the graphs you obtained from Grapher below.

Take screenshots of your z-t and v-t graphs. Save them as “Dyn_IBla.png” and “Dyn_IB1b.png”
and upload them. You can sketch them or attach printouts in the space provided.

@2013—2014 Advanced Instructional Systems, Inc. and Kentucky Educational Television 7



0o 10 FI] 30 40 50
Tiene ()

[Bla. Observation x-t for cart and hanger

i.ﬂl
1.8

=
B

=
_

Velocity [mis)

=
.

=
-
-nh

1.9 0 Time (s) a0 40 50

[B1b. Observation v-t for cart and hanger
Figure 9: Graph IB

9 Record the acceleration, the slope from the v-t graph.

10 Compare this with the theoretical (calculated value) above in 3c by calculating the percentage
error.

11 Show your calculations for percentage error. Use the calculated value as the theoretical value.

Summary

The hanger’s weight, W, is gravity’s pull downward on the hanger, so it’s an external force. That
is, it’s a force exerted on the system from outside.

The two tension forces, T), are internal to our cart-string-hanger system, so they don’t affect its
motion. The system does include the string. The pulley changes the direction of the tension force
but doesn’t affect its magnitude.

The net external force, Fpet is equal to Wy.. Observe the moving cart and note that the lengths of
their vectors are equal.

Just to make sure you understand, the net force is not a particular force acting on our system. It’s
the sum of all the external forces. Also, we often leave off the term “external” and just say net
force.

IC. Accelerated System of a Cart on a Level Track with Two Mass Hangers and
No Friction

How about adding a mass hanger on the left side?

1 Set up your own arrangement and repeat the procedures in Part IB. Add masses to each hanger,
choosing your hanger masses so that there will be a non-zero acceleration.
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2 Provide a well-organized display showing

a all your data from the apparatus. This would just be all your masses.

b all your calculated values. This would include your total mass, all external forces affect-
ing the acceleration, the net force on the system, calculated acceleration from XF = ma,
experimental acceleration from the slope of your v-t graph, and the percentage error
between the calculated (theoretical), and experimental values for your acceleration.Be
careful with units!

¢ all calculations involved in item 2b.

3 Take screenshots of your z-t and v-t graphs and upload them as “Dyn_ICla.png” and “Dyn_IC1b.png”.
You can sketch them or attach printouts in the space provided.

1
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IC1b. Observation v-t for cart and hanger
Figure 10: Graph IC

ITA. Free Fall Acceleration

We’ve found that all bodies in free fall have the same downward acceleration, ¢g. Let’s use our
apparatus to find the value of g for a falling mass hanger. We need a system of one object—
the mass hanger. Hmm. You can’t have a mass hanger without a string to attach it to. And all
position measurements are associated with the cart, not the hanger. So we need a cart, but not its
mass. We need a sort of vacant, empty, soulless, massless cart.

What we need is a Zombie CART! Or as Dr. Seuss would call it, little cart Z.
1 Set up the Dynamics Track with an empty cart and hanger. Drag the cart near the left bumper

and let it go. That looks OK, but as noted, the hanger is not really free falling. It’s dragging
the cart behind it.
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Put on the brake and move the cart near the left end of the track. Now click on the Z-cart
icon. The cart will become translucent indicating that it has become massless. Zoom! Clicking
the Z-cart icon again will restore its mass. Repeat in and out of Z-mode to convince yourself
that the whole system seems to move with a greater acceleration, possibly equal to g, when the
cart’s mass is eliminated. That’s because the system here is really just the mass hanger. So
the Z-car is doing just what we want it to do. It’s collecting sensor data without contributing
any mass.

Try this. Turn on the motion sensor and record the motion in normal mode (hanger + normal
cart) in one color. Then, select another line color and try a Z-mode run. Do the graphs show
different accelerations? They should.

You may have noticed that the brake doesn’t work in Z-mode. Check it out. Why doesn’t it
work in Z-mode?

Since we can eliminate the mass of the cart with Z-mode, we can now look at the motion of the
freely falling hanger. Find its acceleration as follows.

a Set “Recoil” to zero to eliminate bouncing.

b Use normal mode (not Z-mode) with an empty cart and hanger. Move the cart near
the left end of the track with the brake on.

¢ Turn the motion sensor on.

Click on the Z-cart icon. The cart should quickly accelerate to the right end of the
track.

e Turn the motion sensor off.

Let’s find the approximate acceleration using one of our kinematics equations. The cart and
hanger travel with identical motions. We’ll find the acceleration of the cart, which is the same as
that of the hanger. For the cart we can say

Az = vot + %aAtQ. (1)

But if we choose our initial time, £1, as just about when we turn off the brake, v, ~ 0. So

1
Az ~ §aAt2. (2)

We can get At and Az from the Dynamics Track data table. Look at the position values. They’re
all the same until you turned off the brake.
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Copy Data to Clipboard |

Time | Position -
1.344 0.098
1.375 0.096
t1, X4
—p 1206 0.098
1.438 0.108 =
1.469 02T
Time passes...
2, X2 _
— 1938 1.581
1.969 1.76T
2 1.927
2.03 1.927

Figure: Sample Data

6 Find the last data pair before the cart starts moving. Ex. x = 0.098, 0.098, ..., 0.098, 0.108
< the last 0.098. This will be our initial value, when v, =~ 0. The cart’s motion actually
started between this instant and the one after it, but we’ll get a fairly accurate number if we
ignore this error.

a Record this first data pair as t1, and 71 in Table 4 in WebAssign.

b Scroll through the data to find a point somewhat before the cart hit the right bumper.
That is before the position stops changing. Record the data for this point as 9, and xo
in Table 4 in WebAssign.

¢ Calculate and record Az, and At in Table 4 in WebAssign.

Calculate and record the acceleration using equation 2 in Table 4 in WebAssign.

7 Record the following: system mass (mass hanger), m; net force, ¥F = myg; theoretical
a=F/m.

8 Show calculations using equation 2 for the acceleration with just the mass hanger.

9 Show calculations for percentage error. Use the F/m value for acceleration as your theoretical
value.

Your result should be somewhat different than the theoretical value since the timer was already
counting when we started the cart so the time when the cart actually started was most likely
in between two time readings.

IIB. Free Fall — The Effect of the Weight of the Falling Object on Its Acceleration
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Throughout most of recorded history, it was believed that the heavier a body is, the faster it will
fall. (Those of that opinion also didn’t quibble over the definition of the terms “fast” and “slow.”
Did it correspond to velocity or acceleration?)

At first glance, F = ma would seem to support their theory since the acceleration is directly
proportional to F. Thus, a heavier body would seem accelerate faster than a lighter body. Let’s
test this old theory.

In Part ITA, you observed the fall of the empty mass hanger. Let’s make it heavier to see if it goes
“faster” (greater acceleration).

1 Double the weight of the hanger by adding a 50-g mass to it. (You’ll have to turn off Z-mode
temporarily to allow you to put mass on the hanger.)

2 Change graph colors so that you can see the new graph along with the previous one. Take your
data and record it as before, but in Table 5 in WebAssign. Calculate and record the free fall
acceleration of the 100-g mass.

3 Compare Tables 4 and 5 in WebAssign. Doubling the force did not seem to double the accel-
eration. If ¢ o< F, we must be missing something.

The of a body is directly proportional to the net force acting on it.

a
b So if you double the force on it, its acceleration should

¢}

When you doubled the mass in this case, the acceleration

d This is because doubling the weight also doubled the

This is a very special relationship that is still not clearly understood. Why should the force of
gravity on a body be directly proportional to its mass (inertia)? Or vice versa? Perhaps this will
be solved in your lifetime. Stay tuned!

IITA. The Roles of Newton’s Second and Third Laws in Identifying the Forces
Affecting Motion

Anyone who’s ridden in an elevator is familiar with the light or heavy feeling during the elevator’s
upward or downward acceleration. To understand the source of this feeling and why it makes us
feel like our weight has changed, it’s important to be clear about the forces involved.

In Figure 11, we have the two opposing forces acting on our mass hanger. Are they an action-
reaction pair? No! And not just because they aren’t necessasarily equal. Since each force must be
associated with an equal and opposite reaction force, there must be some other forces involved.

Tr

=
Figure 11: FBD
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Newton’s Second Law quantifies the effect of one or more external forces acting on a body (or
system.) Only forces acting on that body are considered using this law. In our free-body diagrams
we use a dot to represent the object we’re interest in.

Newton’s Third Law describes the forces acting between a pair of bodies. One force acts on one
body and the other (equal but oppositely directed) force acts on the other body. Since these forces
act on different bodies only one of them should appear in an equation created using the second law.

NEWTON’S SECOND LAW:

YF = ma, where XF is the sum of the forces on a body (or system) with mass m.

These forces may or may not be equal. They all act on one body.

NEWTON’S THIRD LAW:

Body 1 exerts a force on body 2.
Body 2 exerts an equal but opposite force on body 1.

The third law helps us identify all the forces involved in an interaction between bodies.

FBDs help us determine which of these forces are used in the 2" law: they show the external force
on one body or system.

hi m
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Figure 12: All Forces on Hanger
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Figure 12 shows the four forces involving the mass hanger. If you were to drop the hanger it
would free fall due to the Earth’s downward gravitational force on the hanger, W,. The Earth
would also be pulled upward by the hanger’s gravitational force on the Earth. These forces are
an action-reaction pair and are equal in magnitude as described by the third law. The second law
explains why their free fall accelerations are different—both the force on and the mass of the object
determine its acceleration.

F (hanger on Earth) = —F (Earth on hanger), W (A-R pair #1)

r

The hanger doesn’t free fall because of a second force on it—the upward force of the string on the hanger, T,.
The reaction to this force is the downward force of the hanger on the string.

F (hanger on string) = —F (string on hanger), T (A-R pair #2)

r

These two pairs of action-reaction pairs are diagonal to each other in Figure 12. Notice that in
each pair the nouns (names) just change places.
How do you decide which forces go into your FBD and Newton’s Second Law equation?

a Decide which object you're interested in. (the hanger)

b Use just the forces acting on it.

Newton’s Second Law relates the two forces acting on the hanger, the force on the right sides of
the equations above and on the right side of Figure 12.

T, — W, = m,a (3)

IIIB. Apparent Weight

Now suppose that instead of the mass hanger, you were clinging to the end of string. You are the
dot in the figure. Gravity pulls you downward with a force, Wy. The string pulls up with a force,
T..

That force T, is what we call your apparent weight.

W, is your actual weight, mg.

Your apparent weight equals the upward force on you needed to hold you at rest, move you up
or down at constant speed, or accelerate you up or down. This force changes according to your
motion and you can feel the change.
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Hanging at the end of the string, you would find that you sometimes feel heavier than usual in
that you feel like you’re being stretched out. Other times you’d feel lighter than usual, like you're
holding up a lighter you.

The more familiar case is when you ride in an elevator. In an elevator you feel heavier than normal
or lighter than normal depending on your upward or downward acceleration, respectively. If you
stand on a scale in the elevator, the scale reading matches that feeling.

Let’s explore this with our apparatus. To make it more vivid, imagine yourself as the right mass
hanger (and any attached masses.) You're holding the string to keep from falling. You might also
choose to stand on the hanger.

To make you accelerate up and down, we need a hanger on the left side.

1

Set up the system shown in Figure 13.

You’ll want a string and empty hanger on each side.

a
b You’'ll want Z-mode for this activity. Also recoil = 0.

¢]

Turn on Dynamics Vector. Check (turn on) “Hangers” and “Velocity.”

=

These vectors get in the way of the left hanger. The column of arrows that identify the
vector colors is also a toggle to show/hide the check boxes. You might want to hide
them.

e Add 50 grams to each hanger You're on the right. Your mass (m,) is 100 g!

) —
+X +

@ ]

s

]Tr
TWr
»m

Let’s look at the initial situation—hanging from the rope at rest. That is, v, = 0 and constant.

Figure 13: Apparent Weight

a=0,s0 T, = W,.
Note the length of these vectors on the right side. They’re equal since a = 0.

Now give the cart a good shove in either direction. Or use “Vo” and Go —.
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8
9

How does your apparent weight (T, ) at rest compare to T, when moving at a constant velocity?

From this you should conclude that your apparent weight, T, should be your normal weight.
This means that if you were hanging from the string, you wouldn’t feel any more stretched out
moving at a constant speed than when at rest. Likewise if you were standing on the scale, you
wouldn’t feel any more squished down by gravity than usual.

Now try an upward acceleration. Add 100 grams to the left hanger. You should now have a
total of 100 g on the right and 200 g on the left. Drag the cart to near the right end of the
track. Ignore the situation when T, = W, when the cart is being held. You want to notice
what happens just when you release the carts.

Answer the following questions.

a When you release the cart, what happens to your apparent weight, T}? (increases,
decreases, or remains the same)

b  When you release the cart, what happens to your actual weight, W,? (same choices)

¢ What would it be like, relative to when you were riding at a constant speed, if you were
hanging from the string or standing on the hanger? (stretched or compressed)

Now try a downward acceleration. Adjust the masses so that the right side is still 100 g and
the left side is an empty 50-g hanger. Drag the cart to near the left end of the track.

a When you release the cart, what happens to your apparent weight, T,? (increases,
decreases, or remains the same)

b When you release the cart, what happens to your actual weight, W,? (same choices)

¢ What would it be like, relative to when you were riding at a constant speed, if you were
hanging from the string or standing on the hanger? (less stretched or less compressed)

When you accelerate upward your apparent weight

When you accelerate downward your apparent weight

10 When you are at rest or moving at a constant speed your apparent weight is

IV. Kinetic Friction

And finally, let’s have a quick look at kinetic friction. For this study we’ll just be working with the
normal cart. The only force affecting its motion will be kinetic friction. So click Reset All to
remove all the masses and hangers.

So far the only friction force we’ve encountered is the one supplied by the cart brake. It’s much
too strong a force for our purposes. Instead, we’ll use a friction pad similar to the brake. But this
one is adjustable. In Figure 14, you see a snapshot of the cart traveling to the right at velocity v,.
A friction force, the net force, acts to the left, thus slowing the cart down.

Friel, 2 <

A | —p \IOCitY
w0

Figure 14: Friction Pad
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In Figure 15 you see the wheels/friction pad control. When “wheels” is selected (Figure 15a) the
Vo controls are active. By selecting “friction pad” (Figure 15b), the controls change to allow you
to adjust py, and ps. (They can’t both be selected at once. Each is shown in its selected mode.)
We’ll use only kinetic friction, which is controlled by the ” u)” stepper. We'll start with it set just
as it is in the figure. After one trial, you’ll try to determine an unknown kinetic friction coefficient.
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Figure 15: 15a (with wheels), 15b (with fraction pad)

1 Click the “friction pad” radio button to turn on the friction controls. Set the friction controls
as shown in Figure 15b.

2 Turn on the ruler. Move it above the Dynamic Vectors display.

3 Move the cart to x = 10.0 cm. (This is the position of the cart mast.)

4 Turn on the Dynamic Vectors tool: “E=2 | Check (turn on) “Velocity,” “Net Force,” and
“Friction.”

5 Click “wheels” and set “Vo” to 200 cm/s. Then switch back to “friction pad.”

6 Click Go. The cart should launch to the right and slow to a stop before reaching the right
bumper. If not, retry the preceding instructions.

7 Repeat the preceding step as needed to answer the following.
8 Clearly the cart slows down. What about the friction vector, F¢, tells you why it slows down.
9 What about the velocity vector tells you that it does slow down.

The cart slows down due to the friction force acting on it. From Newton’s second law we know the
following.

YF =ma

Ff =ma
Fe=—uFn=—pmmyg
—pixmg = ma
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So if we knew a, we could divide by ¢ to determine .

How can we find the acceleration, a? If we launch the cart along the track, letting it come to a
halt we know

Vo = 2.00 m/s.
vg = 0.00 m/s.
Az can be found with the ruler.

a can be found from a single kinematics equation. You figure that part out.

10 Got it? Take the data you need and record it. If your value for py is not close to 0.12,
then you’ve done something wrong with your technique or your calculations. You should get a
negative value for the acceleration. (Use g = 9.80 m/s?.)

11 Let’s try an unknown friction coefficient. Change the “uKS?” value to 2 using the numeric
stepper. You’ll quickly find that your 2.00 m/s is not a good choice this time. You can change
it to whatever you like. But letting the cart go most of the way along the track will give better
results than a short run. Note also that the new pys should be much smaller than the previous
value. Record your data and calculations. (Use g = 9.80 m/s?.)
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