Applied Calculus for the Managerial, Life, and Social Sciences 10th edition

Textbook Cover

Soo T. Tan
Publisher: Cengage Learning

enhanced content

Cengage Unlimited

Included in a Cengage Unlimited subscription. Learn More

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

course pack

Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


  • Tan Applied Calculus 10e

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A $100.00
High School $21.50 $35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Preliminaries
    • 1.1: Precalculus Review I (77)
    • 1.2: Precalculus Review II (50)
    • 1.3: The Cartesian Coordinate System (38)
    • 1.4: Straight Lines (51)
    • 1: Concept Review Questions
    • 1: Review Exercises (30)

  • Chapter 2: Functions, Limits, and the Derivative
    • 2.1: Functions and Their Graphs (58)
    • 2.2: The Algebra of Functions (41)
    • 2.3: Functions and Mathematical Models (49)
    • 2.4: Limits (55)
    • 2.5: One-Sided Limits and Continuity (53)
    • 2.6: The Derivative (41)
    • 2: Concept Review Questions
    • 2: Review Exercises (31)

  • Chapter 3: Differentiation
    • 3.1: Basic Rules of Differentiation (53)
    • 3.2: The Product and Quotient Rules (40)
    • 3.3: The Chain Rule (48)
    • 3.4: Marginal Functions in Economics (40)
    • 3.5: Higher-Order Derivatives (38)
    • 3.6: Implicit Differentiation and Related Rates (38)
    • 3.7: Differentials (36)
    • 3: Concept Review Questions
    • 3: Review Exercises (34)

  • Chapter 4: Applications of the Derivative
    • 4.1: Applications of the First Derivative (87)
    • 4.2: Applications of the Second Derivative (50)
    • 4.3: Curve Sketching (44)
    • 4.4: Optimization I (50)
    • 4.5: Optimization II (37)
    • 4: Concept Review Questions
    • 4: Review Exercises (33)

  • Chapter 5: Exponential and Logarithmic Functions
    • 5.1: Exponential Functions (47)
    • 5.2: Logarithmic Functions (42)
    • 5.3: Compound Interest (42)
    • 5.4: Differentiation of Exponential Functions (50)
    • 5.5: Differentiation of Logarithmic Functions (48)
    • 5.6: Exponential Functions as Mathematical Models (34)
    • 5: Concept Review Questions
    • 5: Review Exercises (27)

  • Chapter 6: Integration
    • 6.1: Antiderivatives and the Rules of Integration (71)
    • 6.2: Integration by Substitution (45)
    • 6.3: Area and the Definite Integral (18)
    • 6.4: The Fundamental Theorem of Calculus (48)
    • 6.5: Evaluating Definite Integrals (53)
    • 6.6: Area Between Two Curves (40)
    • 6.7: Applications of the Definite Integral to Business and Economics (36)
    • 6: Concept Review Questions
    • 6: Review Exercises (36)

  • Chapter 7: Additional Topics in Integration
    • 7.1: Integration by Parts (46)
    • 7.2: Integration Using Tables of Integrals (39)
    • 7.3: Numerical Integration (45)
    • 7.4: Improper Integrals (49)
    • 7.5: Volumes of Solids of Revolution (33)
    • 7: Concept Review Questions
    • 7: Review Exercises (24)

  • Chapter 8: Calculus of Several Variables
    • 8.1: Functions of Several Variables (48)
    • 8.2: Partial Derivatives (51)
    • 8.3: Maxima and Minima of Functions of Several Variables (33)
    • 8.4: The Method of Least Squares (35)
    • 8.5: Constrained Maxima and Minima and the Method of Lagrange Multipliers (35)
    • 8.6: Total Differentials (37)
    • 8.7: Double Integrals (27)
    • 8.8: Applications of Double Integrals (29)
    • 8: Concept Review Questions
    • 8: Review Exercises (28)

  • Chapter 9: Differential Equations
    • 9.1: Differential Equations (16)
    • 9.2: Separation of Variables (35)
    • 9.3: Applications of Separable Differential Equations (31)
    • 9.4: Approximate Solutions of Differential Equations (16)
    • 9: Concept Review Questions
    • 9: Review Exercises (25)

  • Chapter 10: Probability and Calculus
    • 10.1: Probability Distributions of Random Variables (61)
    • 10.2: Expected Value and Standard Deviation (32)
    • 10.3: Normal Distributions (34)
    • 10: Concept Review Questions
    • 10: Review Exercises (28)

  • Chapter 11: Taylor Polynomials and Infinite Series
    • 11.1: Taylor Polynomials (34)
    • 11.2: Infinite Sequences (45)
    • 11.3: Infinite Series (39)
    • 11.4: Series with Positive Terms (39)
    • 11.5: Power Series and Taylor Series (32)
    • 11.6: More on Taylor Series (30)
    • 11.7: Newton's Method (37)
    • 11: Concept Review Questions
    • 11: Review Exercises (40)

  • Chapter 12: Trigonometric Functions
    • 12.1: Measurement of Angles (26)
    • 12.2: The Trigonometric Functions (40)
    • 12.3: Differentiation of Trigonometric Functions (45)
    • 12.4: Integration of Trigonometric Functions (35)
    • 12: Concept Review Questions
    • 12: Review Exercises (32)


Applied Calculus for the Managerial, Life, and Social Sciences, 10th Edition, by Soo Tan balances applications, pedagogy, and technology to provide students the context they need to stay motivated in the course and interested in the material.

New for Fall 2019!


Platform Updates

  • New MindTap Reader eBook now supported by HTML5 (non-flashed based) includes embedded media assets for a more integrated study experience
  • Coming soon! An all new, (non-flashed based) interactive graphing tool!
  • New WebAssign Student User Experience that empowers learning at all levels with an upgraded, modern student interface

    Take a Fresh Look at WebAssign

    Coming this Fall, WebAssign is updating to better address the needs and expectations of today's students. Learn about the changes coming to WebAssign-which have been developed to ensure support across changing course models and teaching curricula.

What's New for Applied Calculus?

Our Solutions
Prerequisite and Remediation Help
  • More Watch It videos that provide step-by-step instruction Ideal for visual learners
  • More Algebra remediation exercises for question-level support that targets prerequisite algebra concepts
  • Diagnostic tests available at the beginning of course to assess overall student readiness
Test Prep and Preparedness
  • More Coded review exercises that can be assigned for no credit to allow for extra pre-exam practice
Tools to Reveal Student Thinking
  • More Master It tutorials (labeled MIs) that guide students through the steps they must take to work through given problems
  • New Expanded Problems question types that reveal student thinking and help them demonstrate their work
  • More Stand-Alone Master It exercises (labeled MI.SAs) that enable students to show their work by answering each of the steps associated with a similar version of a given problem

More Features:

  • Read It links under each question quickly jump to the corresponding section of a complete eBook.
  • Course Packs with ready-to-use assignments were built by subject matter experts specifically for this textbook to save you time, and can be easily customized to meet your teaching goals.
  • A Personal Study Plan lets your students use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
MI - Master It
MI.SA - Stand Alone Master It
XP - Extra Problem


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
 Chapter 0
0.D 001ai 001aii 001b 002 003a 003b 004a 004b 005 006a 006b 007a 007b 008a 008b 009 010a 010b
Chapter 1: Preliminaries
1.R 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062
1.1 77 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 086.EP 087 088 088.EP 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
1.2 50 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 042.EP 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 094.EP 095 096 097 098 099 100 101 102
1.3 38 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052
1.4 51 001 002 003 004 004.EP 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 501.XP 502.XP
Chapter 2: Functions, Limits, and the Derivative
2.R 31 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064
2.1 58 002 004 006.MI 006.MI.SA 008 010 012 014 015 016 017 018 019 020 022 023 024 026 028 030 031 032 034 036 037 038 039 040 042 043 044 045 046 048 050 051 054 056 057 060 061 064 066 067 069 072 074 076 078 079 080 081 084 088 089 091 093 501.XP
2.2 41 002 004 006 007 008 010 012 014 016 018 020 022 024 026 028 030 032 034 034.EP 036 038 040 044 046 048.MI 048.MI.SA 050 052 053 054 055 056 057 058 059 060 064 065 068 070 074 501.XP
2.3 49 002 004 006 007 008 010 011 012 014 016 017 018 020 022 026 028 032 033 036 039 041 042 046 049 052 054 058 060 062 064 066 068 070 072 074 076.MI 076.MI.SA 078 079 079.EP 080 082 084 086 088 501.XP 502.XP 503.XP 504.XP 505.XP
2.4 55 002 004 006 008 010 012 014.MI 014.MI.SA 015 016 018 020 023 024 025 026 028 029 030 031 032 034 036 038 041 042 043 044 046 048 050 052 054 056 058 060 062 064 066 069 070 072 074 076 078 080 082 083 084 086 087 088 090 092 501.XP
2.5 53 002 004 006 008 009 011 012 014 016 016.EP 018 020 022 024 025 026 028 030 032 034 036 038 040 042 044 045 046 047 048 050 052 054 056 057 058 058.EP 060 063 065 066 067 068 069 070 071 073 074 080 081 084 086 092 095 098 501.XP
2.6 41 001 002 004 007 008 009 010 012 014 015 016.MI 016.MI.SA 018 020 022 024 025 026 028 030 031 032 032.EP 033 034 035 036 038 040 042 044 046 047 048 050 052 053 054 056 058 059 060
Chapter 3: Differentiation
3.R 34 001 002 003 004 005 006 007 008 008.MI 008.MI.SA 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 032.MI 032.MI.SA 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 501.XP
3.1 53 001 002 004 005 006 007 008 010 011 012 013 014 015 016 018 019 020 022 023 024 024.EP 025 026 028 029 030 032 033 034 036 036.EP 037 039 040 042 042.EP 044 044.EP 046 046.EP 048 050 051 052 054 055 056 058 060 061 062 064 066 067 069 071 071.EP 074 501.XP
3.2 40 002 002.EP 004 004.EP 006 008 008.EP 010 010.EP 012 012.EP 014 014.EP 016 016.EP 018 018.EP 020 020.EP 022 022.EP 024 024.EP 026 026.EP 028 028.EP 030 030.EP 032 034 036 038 040 040.EP 042 043 045 046 046.EP 047 048 050 052 054 056 057 058 059 060 061 062 064 068 070 072
3.3 48 002 004 006 006.EP 008 008.EP 010 010.EP 012 014 014.EP 016 016.EP 018 018.EP 020 022 024 026 028 030 030.EP 032 032.EP 034 034.EP 036 038 038.EP 040 040.EP 042 044 044.EP 046 046.EP 048 050 052 054 056 058.MI 058.MI.SA 059 063 064 064.EP 067 069 070 072 073 074 076 078 081 082 083 086 090 501.XP 502.XP
3.4 40 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017.MI 017.MI.SA 018 019 020 021 022 023 024 025 026 027 027.EP 028 029 030 031 032 035 036 037 038 039 040 042 083 501.XP
3.5 38 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 021.EP 022 024 026 027 028 029 030 032 034 035 036 038 039 040 041 042 043 045
3.6 38 002 004 005 006 008 010 012 014 016 018 019 020 022 024 026 028 030 032 032.EP 034 036 038 040 041 042 044 046 048 050 052 054 056 058 060 061 062 064 066 066.EP 068
3.7 36 002 003 004 005 006 007 008 009 010 011 012 013 014 016 018 020 022 024 024.EP 026 028 030 031 032 033 034 035 036 036.EP 038 040 042 044 045 046 048 049 050
Chapter 4: Applications of the Derivative
4.R 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 501.XP
4.1 87 002 003 004 006 007 008 009 010 012 013 014 015 016 017 018 019 020 021 022 023 024.MI 024.MI.SA 025 026 027 028 028.EP 029 029.EP 030 031 032 033 033.EP 034 035 036 037 038 039 042 043 044 045 046 047 048 051 052 053 054 055 056 057 058 059 061 062 064 065 066 067 067.EP 068 069 070 071 071.EP 073 075 076 077 078.MI 078.MI.SA 079 081 082 083 084 085 087 088 090 091 092 094 096 097 099 102 106 501.XP
4.2 50 004 006 008 009 012 014 015 017 019 021 022 023 030 030.EP 032 032.EP 034.MI 034.MI.SA 036 036.EP 038 038.EP 040 042 042.EP 044 044.EP 046 048 050 050.EP 052.MI 052.MI.SA 054 054.EP 056 056.EP 058 060 062 064 064.EP 068 070 072 074 076 083 085 088 090 093 094 096 098 099 105 501.XP 502.XP 503.XP
4.3 44 001 002 004 006 008 009 010 012 014 016 018 020.MI 020.MI.SA 022 024 026 028 029 031 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 065 066 067 068 069 070 071 072 501.XP
4.4 50 002 003 004 006 008 010 012 014 016 016.EP 018.MI 018.MI.SA 020 020.EP 022 024 024.EP 026 028 028.EP 030 032 034 036 038 040 042 043 045.MI 045.MI.SA 046 047 047.EP 048 049 050 051 053 055 056 057 058 059 060 062 064 065 067 069 072 074 076 077 080 501.XP
4.5 37 001 002 003 004 005 006.MI 006.MI.SA 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036
Chapter 5: Exponential and Logarithmic Functions
5.R 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060
5.1 47 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020.MI 020.MI.SA 021 022 023 024 026 027 028 030 031 032 033 034 036 037 040 044 045 046 047 048 050 051 501.XP 502.XP 503.XP 504.XP
5.2 42 002.MI 002.MI.SA 004.MI 004.MI.SA 006.MI 006.MI.SA 008 010 012 013 014 016 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 038 040 042 044 045 046 047 048 050 051 052 054 055 056 057 058 062 063 501.XP
5.3 42 001 001.EP 002 003 004 005 006 007 008 009 010 012 012.EP 014 014.EP 015 016 017 018 019 021 022 022.EP 023 024 025 026 027 029 030 031 032 034 040 042 045 046 047 048 049 051 052 054 058 061 501.XP
5.4 50 002 004 006 008 010 012 014 016 018 020 022.MI 022.MI.SA 024 026 028 029 029.EP 030 032 032.EP 034 034.EP 036 038 040 042 044 044.EP 046 047 048 050 051 052 053 054 056 057 059 060 062 069 071 072 074 078 079 081 083 085 087 089 092 501.XP
5.5 48 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 036.EP 038 040 042 044 046 048 050 051 054 054.EP 056 058 060 062 064 064.EP 067 068 070 072 073 074 075 076 078 080 085 087 089 098 501.XP 502.XP
5.6 34 001 002 003 004 005 006.MI 006.MI.SA 007 008 009 010 011 012 013 014 015 016 018 019 020 021 022 023 024 026 027 028 029 030 031 032 033 038 501.XP
Chapter 6: Integration
6.R 36 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 501.XP
6.1 71 001 002 003 004 005 006 007 009 010 011 012 013 014 015 016 017 018 019 020 022 024 025 026 027 028 029 030 032 034 036 038 040 040.EP 041 042.MI 042.MI.SA 044 046 047 052 052.EP 053 054 054.EP 056 056.EP 057 060 061 062 064 066 067 068 070.MI 070.MI.SA 073 074 075 076 080 082 083 085 088 089 090 092 094 095 097 501.XP 502.XP 503.XP 504.XP
6.2 45 001 002 003 004 006 008 010 012 014 015 016 018 020 022 024 026 028 030 032 034 036 038.MI 038.MI.SA 039 040 042 044 045 046 048 051 054 055 056 058 059 060 061 062 063 066 067 501.XP 502.XP 503.XP
6.3 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
6.4 48 002 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 018.EP 020 020.EP 022 022.EP 023 024 024.EP 025 026 026.EP 028 028.EP 030 032.MI 032.MI.SA 033 034 036 038 040 040.EP 043 044 045 046 048.MI 048.MI.SA 050 052 053 057 059 062 501.XP 502.XP 503.XP 604.XP 605.XP
6.5 53 001 001.EP 002 002.EP 003 004 005 005.EP 006 007 007.EP 008.MI 008.MI.SA 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 026 028 028.EP 029 031 033 036 038 040 042 044 045 046 047 048 049 050 051 052 054 056 058 060 061 062 064 066 078 080 501.XP
6.6 40 002 003 004 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 028 030 032 033 034 036 038 040.MI 040.MI.SA 042 043 044 045 046 048 050 052 054
6.7 36 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018.MI 018.MI.SA 020 021 022 023 024 025 026 027 028 031 032 033 034 501.XP 502.XP 503.XP 504.XP
Chapter 7: Additional Topics in Integration
7.R 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034
7.1 46 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 024 026 028 030 030.EP 032 033 034 034.EP 036 037 038 039 040 042 043 044 046 048 050 051 052 054 055 057 058 060
7.2 39 001 002 003 004 005 006 007 008 009 009.EP 010 011 012 013 014 014.EP 015 016 017 018 019 020 021 022 023 024 025 026 028 029 030 032 033 034 035 036 037 038 039 042 043
7.3 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 036 038 040 042 043 044 046 048 049 051 501.XP
7.4 49 001 002 003 004 005 006 006.EP 007 008 008.EP 009 010 010.EP 011 012 012.EP 013 014 014.EP 015 016 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 038 040 042 043 044 046 047 048 049 051 052 054 057 060
7.5 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033
Chapter 8: Calculus of Several Variables
8.R 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062
8.1 48 001 002 003 004 005 006 007 008.MI 008.MI.SA 009 010 012 013 014 015 016 017 018.MI 018.MI.SA 019 021 022 023 025 032.MI 032.MI.SA 033 034 036 037 038 039 040 041 042 043 044 045 046 047 049 050 051 052 053 054 056 061
8.2 51 001 002 003 004 006 007 008 009 010 012.MI 012.MI.SA 013 014 015 016 018 020.MI 020.MI.SA 021 022 024 025 026 028 030 032 033 034 036 037 038 040 042 044 046 047 048 049 050 052 054 055 057 058 059 060 061 062 064 070 072
8.3 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 030 031 032 033 034 035
8.4 35 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 021 022 023 024 026 027 028 029 030 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
8.5 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 030 031 032 033 034 039 040
8.6 37 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 019 020 022 024 025 026 028 029 030 031 032 034 035 038 040 042 044 045 046 048
8.7 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027
8.8 29 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029
Chapter 9: Differential Equations
9.R 25 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.1 16 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.2 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 039 040
9.3 31 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 027 029 030 031 032 501.XP
9.4 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
Chapter 10: Probability and Calculus
10.R 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
10.1 61 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 058 060 063 064 501.XP 502.XP
10.2 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 024 025 026 027 029 030 031 032 033 034 035
10.3 34 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034
Chapter 11: Taylor Polynomials and Infinite Series
11.R 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
11.1 34 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 023 024 025 026 028 030 032 033 034 036 038 039 040 042
11.2 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 021 022 023 024 025 026 027 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
11.3 39 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 038 041 042
11.4 39 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049
11.5 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032
11.6 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
11.7 37 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 035 036 037 039
Chapter 12: Trigonometric Functions
12.R 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
12.1 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
12.2 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 032 033 035 036 037 048 049 051 052 053
12.3 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 036 038 039 040 042 046 054 056 058 060 064
12.4 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 026 028 030 032 033 034 035 036 038 043 044 046
Total 3150 (581)