Calculus: Early Transcendentals 1st edition

Textbook Cover

Rogawski, Jon
Publisher: W. H. Freeman


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Semester $40.19
Quarter $40.19
High School $10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Precalculus Review
    • 1.1 Real Numbers, Functions, Equations, and Graphs (18)
    • 1.2 Linear and Quadratic Functions (20)
    • 1.3 The Basic Classes of Functions (15)
    • 1.4 Trigonometric Functions (11)
    • 1.5 Inverse Functions (12)
    • 1.6 Exponential and Logarithmic Functions (14)
    • 1.7 Technology: Calculators and Computers (11)

  • Chapter 2: Limits
    • 2.1 Limits, Rates of Change, and Tangent Lines (11)
    • 2.2 Limits: A Numerical and Graphical Approach (12)
    • 2.3 Basic Limit Laws (11)
    • 2.4 Limits and Continuity (12)
    • 2.5 Evaluating Limits Algebraically (15)
    • 2.6 Trigonometric Limits (13)
    • 2.7 Intermediate Value Theorem (11)
    • 2.8 The Formal Definition of a Limit (11)

  • Chapter 3: Differentiation
    • 3.1 Definition of the Derivative (11)
    • 3.2 The Derivative as a Function (16)
    • 3.3 Product and Quotient Rules (11)
    • 3.4 Rates of Change (12)
    • 3.5 Higher Derivatives (12)
    • 3.6 Derivatives of Trigonometric Functions (13)
    • 3.7 The Chain Rule (14)
    • 3.8 Implicit Differentiation (12)
    • 3.9 Derivatives of Inverse Functions (11)
    • 3.10 Derivatives of Logarithmic Functions (14)
    • 3.11 Related Rates (11)

  • Chapter 4: Applications of the Derivative
    • 4.1 Linear Approximation and Applications (10)
    • 4.2 Extreme Values (12)
    • 4.3 The Mean Value Theorem and Monotonicity (12)
    • 4.4 The Shape of a Graph (12)
    • 4.5 Graph Sketching and Asymptotes (11)
    • 4.6 Applied Optimization (16)
    • 4.7 L'Ho'pital's Rule (11)
    • 4.8 Newton's Method (11)
    • 4.9 Antiderivatives (11)

  • Chapter 5: Integral
    • 5.1 Approximating and Computing Area (11)
    • 5.2 The Definite Integral (11)
    • 5.3 The Fundamental Theorem of Calculus, Part I (11)
    • 5.4 The Fundamental Theorem of Calculus, Part II (11)
    • 5.5 Net or Total Change as the Integral of a Rate (11)
    • 5.6 Substitution Method (11)
    • 5.7 Integrals of Exponential and Logarithmic Functions (11)
    • 5.8 Exponential Growth and Decay (11)

  • Chapter 6: Applications of the Integral
    • 6.1 Area Between Two Curves (11)
    • 6.2 Setting Up Integrals: Volumes, Density, Average Value (11)
    • 6.3 Volumes of Revolution (11)
    • 6.4 The Method of Cylindrical Shells (11)
    • 6.5 Work and Energy (11)

  • Chapter 7: Techniques of Integration
    • 7.1 Numerical Integration (11)
    • 7.2 Integration by Parts (11)
    • 7.3 Trigonometric Integrals (11)
    • 7.4 Trigonometric Substitution (11)
    • 7.5 Integrals of Hyperbolic and Inverse Hyperbolic Functions (11)
    • 7.6 The Method of Partial Fractions (11)
    • 7.7 Improper Integrals (11)

  • Chapter 8: Further Applications of the Integral and Taylor Polynomials
    • 8.1 Arc Length and Surface Area (10)
    • 8.2 Fluid Pressure and Force (11)
    • 8.3 Center of Mass (11)
    • 8.4 Taylor Polynomials (11)

  • Chapter 9: Introduction to Differential Equations
    • 9.1 Separable Equations (12)
    • 9.2 Models Involving y' = k(y-b) (12)
    • 9.3 Graphical and Numerical Methods (12)
    • 9.4 The Logistic Equation (11)
    • 9.5 First-order Linear Equations (11)

  • Chapter 10: Infinite Series
    • 10.1 Sequences (11)
    • 10.2 Summing an Infinite Series (11)
    • 10.3 Convergence of Series with Positive Terms (11)
    • 10.4 Absolute and Conditional Convergence (11)
    • 10.5 The Ratio and Root Tests (11)
    • 10.6 Power Series (11)
    • 10.7 Taylor Series (11)

  • Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections
    • 11.1 Parametric Equations (11)
    • 11.2 Arc Length and Speed (11)
    • 11.3 Polar Coordinates (11)
    • 11.4 Area and Arc Length in Polar Coordinates (11)
    • 11.5 Conic Sections (11)

  • Chapter 12: Vector Geometry
    • 12.1 Vectors in the Plane (11)
    • 12.2 Vectors in Three Dimensions (11)
    • 12.3 Dot Product and the Angle Between Two Vectors (11)
    • 12.4 The Cross Product (11)
    • 12.5 Planes in Three-Space (11)
    • 12.6 Survey of Quadric Surfaces (11)
    • 12.7 Cylindrical and Spherical Coordinates (11)

  • Chapter 13: Calculus of Vector-Valued Functions
    • 13.1 Vector-Valued Functions (11)
    • 13.2 Calculus of Vector-Valued Functions (11)
    • 13.3 Arc Length and Speed (10)
    • 13.4 Curvature (10)
    • 13.5 Motion in Three-Space (10)
    • 13.6 Planetary Motion According to Kepler and Newton (11)

  • Chapter 14: Differentiation in Several Variables
    • 14.1 Functions in Two or More Variables (11)
    • 14.2 Limits and Continuity in Several Variables (11)
    • 14.3 Partial Derivatives (11)
    • 14.4 Linear Approximation, Differentiability, and Tangent Planes (11)
    • 14.5 The Gradient and Directional Derivatives (11)
    • 14.6 The Chain Rule (11)
    • 14.7 Optimization in Several Variables (11)
    • 14.8 Lagrange Multipliers: Optimizing with a Constraint (11)

  • Chapter 15: Multiple Integration
    • 15.1 Integrals in Several Variables (11)
    • 15.2 Double Integrals over More General Regions (11)
    • 15.3 Triple Integrals (11)
    • 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates (11)
    • 15.5 Change of Variables (10)

  • Chapter 16: Line and Surface Integrals
    • 16.1 Vector Fields (11)
    • 16.2 Line Integrals (11)
    • 16.3 Conservative Vector Fields (11)
    • 16.4 Parameterized Surfaces and Surface Integrals (11)
    • 16.5 Integrals of Vector Fields (11)

  • Chapter 17: Fundamental Theorems of Vector Analysis
    • 17.1 Green's Theorem (11)
    • 17.2 Stokes' Theorem (10)
    • 17.3 Divergence Theorem (11)

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Precalculus Review
1.1 18 002 004 006 010 012 018 020 022 034 036 046 048 058 060 070 072 074 076
1.2 20 002 004 006 008 010 012 014 016 018 020 024 026 028 030 036 040 042 044 046 050
1.3 15 002 004 006 008 010 012 014 016 018 020 022 028 030 032 034
1.4 11 004 008 010 012 018 022 024 026 036 038 052
1.5 12 P.001 004 010 012 020 022 026 030 036 040 044 050
1.6 14 004 006 010 020 022 024 026 027 028 032 035 036 042 046
1.7 11 002 003 004 006 008 012 014 016 018 020 022
Chapter 2: Limits
2.1 11 002 004 006 008 010 012 018 022 024 026 032
2.2 12 002 004 008 010 024 026 030 032 042 044 046 056
2.3 11 002 004 008 014 018 022 024 026 028 036 038
2.4 12 002 004 006 020 032 040 052 066 077 082 084 086
2.5 15 002 004 008 012 018 022 026 030 032 034 040 042 048 050 052
2.6 13 002 004 008 010 011 014 018 022 024 028 034 040 044
2.7 11 002 004 006 012 014 016 017 018 020 022 024
2.8 11 001 002 004 006 010 012 014 016 018 020 022
Chapter 3: Differentiation
3.1 11 002 008 020 022 028 042 044 048 056 068 070
3.2 16 006 010 014 020 024 028 032 040 042 048 050 054 058 062 066 080
3.3 11 006 010 014 020 026 032 036 042 044 052 054
3.4 12 002 004 008 014 017 020 028 032 040 042 046 050
3.5 12 004 008 010 012 024 026 030 038 047 050 052 056
3.6 13 002 004 006 012 016 020 028 031 037 043 044 049 050
3.7 14 004 008 013 014 018 026 038 047 049 056 074 076 080 082
3.8 12 002 012 018 022 028 030 033 038 039 042 043 056
3.9 11 002 004 008 009 010 012 014 020 024 030 036
3.10 14 005 006 008 016 018 020 026 034 038 044 056 068 074 080
3.11 11 002 010 014 016 020 024 026 028 032 036 043
Chapter 4: Applications of the Derivative
4.1 10 004 008 022 028 032 036 046 048 058 060
4.2 12 002 006 012 014 016 026 038 042 054 060 070 074
4.3 12 002 008 012 020 026 030 036 044 048 058 060 064
4.4 12 005 008 012 016 020 024 030 034 038 042 046 052
4.5 11 018 028 034 044 052 058 062 070 078 084 094
4.6 16 002 006 009 011 012 015 016 020 024 027 032 035 040 044 052 056
4.7 11 002 008 014 018 022 024 032 038 040 046 054
4.8 11 002 004 006 007 008 010 012 016 020 022 024
4.9 11 004 014 022 025 028 036 040 052 062 068 076
Chapter 5: Integral
5.1 11 006 008 018 032 036 046 048 052 056 062 066
5.2 11 002 032 040 044 046 050 052 064 066 072 074
5.3 11 006 010 016 020 024 028 032 036 042 044 054
5.4 11 002 004 006 008 010 014 018 020 024 030 042
5.5 11 001 002 004 006 008 010 012 014 016 018 020
5.6 11 008 012 018 022 026 036 040 050 064 078 084
5.7 11 002 004 008 016 020 026 034 040 046 054 060
5.8 11 002 004 008 010 014 016 020 024 034 040 046
Chapter 6: Applications of the Integral
6.1 11 004 008 016 020 030 032 034 036 040 042 050
6.2 11 010 012 016 018 020 024 026 030 038 054 056
6.3 11 002 006 010 015 022 026 030 035 040 048 051
6.4 11 004 008 012 014 019 024 027 036 042 048 049
6.5 11 001 006 007 012 013 016 018 019 023 030 031
Chapter 7: Techniques of Integration
7.1 11 002 006 011 014 021 025 027 031 038 041 046
7.2 11 004 012 018 024 027 036 042 047 052 065 066
7.3 11 002 006 012 016 022 030 038 042 050 053 060
7.4 11 006 009 016 018 022 028 034 039 053 054 056
7.5 11 002 005 006 008 014 018 024 025 027 039 041
7.6 11 002 004 007 014 018 027 031 040 042 059 065
7.7 11 002 023 024 034 036 041 043 054 066 075 080
Chapter 8: Further Applications of the Integral and Taylor Polynomials
8.1 10 004 006 009 018 022 025 028 032 038 040
8.2 11 006 009 010 012 014 016 017 019 020 021 022
8.3 11 002 004 006 013 016 019 020 023 027 028 035
8.4 11 002 006 008 012 016 022 023 032 037 038 047
Chapter 9: Introduction to Differential Equations
9.1 12 002 006 014 018 024 030 032 034 036 046 050 058
9.2 12 002 004 006 008 010 011 012 016 018 020 022 024
9.3 12 004 006 008 009 012 014 015 016 017 018 019 026
9.4 11 001 002 004 005 006 007 008 009 011 015 016
9.5 11 004 019 020 021 022 023 024 025 026 028 032
Chapter 10: Infinite Series
10.1 11 002 004 009 012 014 020 028 030 046 052 056
10.2 11 001 004 006 009 018 020 026 030 032 040 044
10.3 11 002 008 022 028 036 040 046 050 056 068 072
10.4 11 004 005 006 008 010 012 014 020 022 024 026
10.5 11 004 008 012 024 027 030 032 034 038 046 050
10.6 11 001 002 008 010 020 022 028 032 044 048 050
10.7 11 002 004 012 016 024 036 050 054 058 062 070
Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections
11.1 11 008 012 020 022 024 026 038 050 054 058 076
11.2 11 002 004 006 008 010 012 016 018 020 022 030
11.3 11 004 006 008 010 012 014 020 022 038 042 044
11.4 11 002 004 010 012 016 018 026 030 032 034 035
11.5 11 006 012 014 020 024 026 034 042 052 056 060
Chapter 12: Vector Geometry
12.1 11 004 006 012 024 026 030 034 038 046 050 056
12.2 11 002 006 008 012 014 018 022 028 036 042 048
12.3 11 004 010 014 020 024 030 034 044 052 060 070
12.4 11 004 006 014 018 026 032 036 042 044 058 064
12.5 11 002 008 012 018 022 028 030 036 044 052 060
12.6 11 002 004 006 008 010 014 016 022 024 026 034
12.7 11 002 006 016 026 034 036 042 045 058 062 064
Chapter 13: Calculus of Vector-Valued Functions
13.1 11 004 006 008 010 012 014 018 022 024 026 036
13.2 11 002 004 014 019 024 026 030 034 044 048 056
13.3 10 002 004 007 008 010 012 014 015 016 020
13.4 10 002 004 009 010 014 030 041 048 052 060
13.5 10 004 014 016 020 026 032 034 040 044 046
13.6 11 002 003 006 007 008 009 010 012 013 016 017
Chapter 14: Differentiation in Several Variables
14.1 11 002 006 020 022 028 045 046 048 050 052 054
14.2 11 002 004 006 016 018 020 022 028 030 036 038
14.3 11 002 008 014 032 034 044 048 050 054 058 064
14.4 11 004 006 008 010 012 018 020 024 030 034 038
14.5 11 002 006 010 012 020 028 034 038 040 042 048
14.6 11 002 004 008 012 014 017 018 022 024 028 030
14.7 11 002 006 010 012 017 024 028 032 034 036 040
14.8 11 004 006 008 010 012 016 022 026 028 030 035
Chapter 15: Multiple Integration
15.1 11 002 009 010 017 020 023 027 029 033 037 039
15.2 11 005 012 014 017 022 028 039 043 051 055 060
15.3 11 003 006 007 012 017 019 023 025 031 033 035
15.4 11 002 004 005 007 015 024 029 033 044 055 059
15.5 10 001 002 007 013 016 021 029 031 040 043
Chapter 16: Line and Surface Integrals
16.1 11 001 004 014 016 017 019 020 022 024 027 028
16.2 11 002 004 008 009 017 022 024 033 038 040 049
16.3 11 001 002 004 005 007 009 012 017 019 022 023
16.4 11 003 007 013 019 022 027 029 036 037 039 040
16.5 11 001 002 005 007 011 013 017 019 021 022 029
Chapter 17: Fundamental Theorems of Vector Analysis
17.1 11 002 003 004 005 006 009 011 015 017 020 027
17.2 10 001 002 005 006 007 009 011 014 019 021
17.3 11 003 004 005 008 011 013 014 015 018 021 035
Total 1262